B.Sc. (Bio)

Combination Of Chemistry-Botany-Zoology

- <u>Subject-1 Chemistry</u>
- <u>Subject-2 Botany</u>
- Subject-3 Zoology

B.Sc. Chemistry

DISTRIBUTION OF DIFFERENT COURSES AND CREDITS IN VARIOUS SEMESTERS

Offered By:

Department of Chemistry Faculty of Science Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Course C	ode: BCHE 101
Course Title: Basics of Chemistry	
Credits: 2+0	
Unit	Topics
Ι	Introduction to Indian ancient Chemistry and contribution of Indian Chemists,
	in context to the holistic development of modern science and technology

Course C	Course Code: BCHE 102 (B020101T)	
Course T	itle: Fundamentals of Chemistry	
Credits:	4+0	
Unit	Topics	
Ι	Molecular polarity and Weak Chemical Forces:	
	Resonance and resonance energy, formal charge, hydrogen bonding, Van der	
	Waals forces, ion-dipole forces, dipole- dipole interactions, induced dipole	
	interaction, dipole moment and molecular Structure (Diatomic and polyatomic	
	molecules), Percentage ionic character from dipole moment, polarizing power	
	and polarizability.	
11	Simple Bonding theories of Molecules:	
	Atomic orbitals, Aufbau principle, multiple bonding (σ and π bond approach)	
	hybrid orbitals and malagular geometry. Parts rule Valence shall electron pair	
	repulsion theory (VSEDD), shares of the following simple molecules and jons	
	containing long pairs and hand pairs of clostrons; H2O NH2 PC15 SE6 SE4	
	CIE2 I CIE ² and SO 2^{-1} and H2O ⁺ Molecular orbital theory (MOT)	
	Melagular orbital diagrams hand orders of homonuclear and hotoronuclear	
	diatomic molecules and ions (N2 O2 C2 B2 F2 CO NO and their ions)	
	A Periodic properties of Δ toms (with reference to s & p-block):	
	Brief discussion, factors affecting and variation trends of following properties in	
	groups and periods. Effective nuclear charge, shielding or screening effect.	
	Slater rules, Atomic and ionic radii, electronegativity, Pauling's/Allred	
	Rochow's scales, Ionization enthalpy, electron gain enthalpy.	
	B. Acid-Base concept	
	Lewis concept, concept and classification of Hard and Soft Acids and Bases.	
	Applications of HSAB Principle.	
IV	Recapitulation of basics of Organic Chemistry:	
	Hybridization, bond lengths and bond angles, bond energy, localized and	
	Displacemental bonding, hyperconjugation, Dipole moment; Electronic	
	applications	
V	Mechanism of Organic Reactions: Curved arrow notation drawing electron	
•	movements with allows half-headed and double-headed arrows homolytic and	
	heterolytic bond fission. Types of reagents electrophiles and nucleophiles. Types	
	of organic reactions. Energy considerations. Reactive intermediates	
	Carbocations, carbanions, free radicals, Assigning formal charges on	
	intermediates and other ionic species.	
VI	Stereochemistry:	
	Concept of isomerism, Types of isomerism; Optical isomerism elements of	

	symmetry, molecular chirality, enantiomers, stereogenic center, optical activity,
	properties of enantiomers, chiral and achiral molecules with two stereogenic
	centers, disasteromers, threo and erythro diastereomers, meso compounds,
	resolution of enantiomer, inversion, retention and recemization. Relative and
	absolute configuration, sequence rules, D & L and R & S systems of
	nomenclature. Geometric isomerism determination of configuration of geometric
	isomers, E & Z system of nomenclature, Conformational isomerism
	conformational analysis of ethane and n-butane;
VII	Basic Computer system (in brief)-Hardware and Software; Input devices,
	Storage devices, Output devices, Central Processing Unit (Control Unit and
	Arithmetic Logic Unit); Number system (Binary, Octal and Hexadecimal
	Operating System)
VIII	Environmental Chemistry :
	The earth's atmosphere and its components., Types of pollutants and their
	sources. Green house effect and global warming. Acid rains, Ozone layer
	(Importance and its protection)

Course C	Course Code: BCHE 103 (B020102P)	
Course Title: Quantitative Analysis		
Credits: 0+ 2		
Unit	Topics	
	Water Quality analysis	
	1. Estimation of hardness of water by EDTA.	
I	2. Determination of chemical oxygen demand (COD).	
	3. Determination of Biological oxygen demand (BOD).	
	Estimation of Metals ions	
II	1. Estimation of ferrous and ferric by dichromate method.	
	2. Estimation of copper using thiosulphate.	
III	Estimation of acids and alkali contents	
	1. Determination of acetic acid in commercial vinegar using NaOH.	
	2. Determination of alkali content antacid tablet using HCl.	
	3. Estimation of oxalic acid by titrating it with KMnO4.	
IV	Estimation of inorganic salts and hydrated water	
	1. Estimation of sodium carbonate and sodium hydrogen carbonate	
	present in a mixture.	
	2. Redox titrations e.g. titration of ferrous ion with permanganate	
	and dichromate using internal and external indicators	
	3. Iodometric Estimation of Copper Sulphate and Potassium dichromate	
	4. Estimation of water of crystallization of mohar's salt by titrating with	
	KMnO ₄ .	

Course C	Code: BCHE 104 (B020201T)
Course T	itle: Bioorganic and Medicinal Chemistry
Credits:	4+0
Unit	Topics
Ι	Chemistry of Carbohydrates:
	Classification of carbohydrates, reducing and non-reducing sugars, General
	Properties of Glucose and Fructose, their open chain structure. Epimers,
	mutarotation and anomers. Mechanism of mutarotation Determination of
	configuration of Glucose (Fischer proof). Cyclic structure of glucose. Haworth
	projections. Cyclic structure of fructose. Inter conversions of sugars (ascending
	and descending of sugar series, conversion of aldoses to ketoses).
II	Chemistry of Proteins:
	Classification of amino acids, zwitter ion structure and Isoelectric point.
	Overview of primary, secondary, tertiary, and quaternary structure of proteins.
	Determination of primary structure of peptides, determination of N-terminal
	amino acid (by DNFB and Edman method) and C terminal amino, Synthesis of
	simple peptides (upto dipeptides) by N-protection & C-activating groups and
	Merrifield solid phase synthesis.
III	Chemistry of Nucleic Acids:
	Constituents of Nucleic acids: Adenine, guanine, thymine, and Cytosine
	(Structure only), Nucleosides and nucleotides (nomenclature), Synthesis of
	nucleic acids, Structure of polynucleotides; Structure of DNA (Watson-Crick
	model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and
IN Z	KNA: Replication, Transcription and Translation
IV	Introductory Medicinal Chemistry:
	Drug discovery, design, and development, Basic Retrosynthetic approach. Drug
	action-receptor theory. Structure activity relationships of drug molecules,
N7	Salid State
v	Solid State Definition of group lattice unit cell Levye of grantellography (i) Levy of
	Definition of space fattice, unit cent. Laws of crystanography (1) Law of constance, of interfacial angles (ii) Law of rationality of indices and iii)
	Symmetry elements in crystels and law of symmetry. Y ray diffraction by
	crystals Derivation of Bragg equation Determination of crystal structure of
	NaCl and KCl
VI	Introduction to Polymer
**	Monomers, Oligomers, Polymers and their characteristics, Classification of
	polymers: Natural synthetic, linear, cross linked and network: plastics.
	elastomers, fibers, Homopolymers and Co-polymers, Bonding in polymers :
	Primary and secondary bond forces in polymers : cohesive energy, and
	decomposition of polymers.
	Silicones and PhosphazenesSilicones and phosphazenes as examples of
	inorganic polymers, nature of bonding in triphosphazenes.
VII	Synthetic Dyes: Color and constitution (electronic Concept), Classification of
	dyes,
	Chemistry and synthesis of Methyl orange, Congo red, Malachite green

Course Code: BCHE 105 (B020202P)	
Course Title: Biochemical Analysis	
Credits: 0+2	
Unit	Topics
Ι	Qualitative and quantitative analysis of Carbohydrates: .
	1. Separation of a mixture of two sugars by ascending paper chromatography
	2. Differentiate between a reducing/ non reducing sugar
	3. Synthesis of Osazones.
Π	Qualitative and quantitative analysis of Proteins, amino acids, and Fats
	1. Isolation of protein.
	2. Determination of protein by the Biuret reaction.
	3. TLC separation of a mixture containing 2/3 amino acids
	4. Paper chromatographic separation of a mixture containing 2/3 amino acids
	5. Action of salivary amylase on starch
	6. To determine the concentration of glycine solution by formylation method.
	7. To determine the saponification value of an oil/fat.
	8. To determine the iodine value of an oil/fat
III	Determination and identification of Nucleic Acids
	1. Determination of nucleic acids
	2. Extraction of DNA from onion/cauliflower
IV	Synthesis of Simple drug molecules
	1. To synthesize aspirin by acetylation of salicylic acid and compare it with
	the ingredient of an aspirin tablet by TLC.
	2. Synthesis of barbituric acid
	3. Synthesis of propanol

Course Code: BCHE 201 (B020301T) **Course Title: Chemical Dynamics & Coordination Chemistry** Credits: 4+0 Unit Topics I Chemical Kinetics: Rate of a reaction, molecularity and order of reaction, concentration dependence of rates, mathematical characteristic of simple chemical reactions zero order, first order, second order, pseudo order, halflife and mean life. Determination of the order of reaction differential method, method of integration, half-life method and isolation method. Theories of chemical kinetics: Effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy. Simple collision theory based on hard sphere model, transition state theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium constant and thermodynamic aspects (no derivation). Phase Equilibrium: Statement and meaning of the terms-phase, component Π and degree of freedom, derivation of Gibbs phase rule, phase equilibria of one component system water, S, He and Diamond, graphite. Phase equilibria of two component systems Solid - liquid equilibria, simple eutectic. Pb-Ag systems. Ш **Kinetic theories of gases** Gaseous State: Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waals equation of state. Critical phenomena: PV isotherms of real gases, continuity of states, the isotherms of Van der Waals equation, relationship between critical constants and Van der Waals constants, the law of corresponding states, reduced equation of state. IV **Liquid State** Liquid State: Intermolecular forces, structure of liquids (a qualitative description). Structural differences between solids, liquids and gases. Liquid crystals: Difference between liquid crystal, solid and liquid. Classification, structure of nematic and cholesterol phases. Thermography and seven segmentcell. V **Coordination Chemistry** Coordinate bonding, double complex salts, Werner's theory of coordination complexes classification of ligands, ambidentate ligands, chelates, coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers), Isomerism in coordination compounds, constitutional and stereo isomerism, geometrical and optical isomerism in square planar and octahedral complexes. VI **Theories of Coordination Chemistry** I. Metal- ligand bonding in transition metal complexes, limitations of valance bond theory, an elementary idea of crystal field theory, crystal field splitting

	in octahedral, tetrahedral and square planner complexes, factors affecting the
	crystal-field parameters.
	II. Thermodynamic and kinetic aspects of metal complexes: A brief outline of
	thermodynamic stability of metal complexes and factors affecting the
	stability, stability constants of complexes and their determination, substitution
	reactions of square planar complexes
VII	Inorganic Spectroscopy and Magnetism
	I. Electronic spectra of Transition Metal Complexes, Types of electronic
	transitions, selection rules for d-d transitions, spectroscopic ground states,
	spectrochemicalseries, Orgel-energy level diagram for d1 and d9 states,
	discussion of the electronic spectrum of [Ti(H2O)6] 3+ complex ion.
	II. Magnetic properties of transition metal complexes, types of magnetic
	behaviour, methods of determining magnetic susceptibility, spin-only
	formula, L-S coupling, correlation of μ s and μ eff values, orbital contribution
	to magnetic moments, application of magnetic moment data for 3d-metal
	complexes. General description of magnetic properties :Paramagnetism,
	diamagnetism, ferromagnetism and magnetic suspectibility

Course Code: BCHE 202 (B020302P)	
Course T	itle: Physical Analysis
Credits:	0+2
Unit	Topics
Ι	Strengths of Solution
	Calibration of fractional weights, pipettes, and burettes. Preparation of standards
	solutions. Dilution 0.1M to 0.001M solutions
	Mole Concept and Concentration Units: Mole Concept, molecular weight,
	formula weight, and equivalent weight. Concentration units: Molarity,
	Formality, Normality, Molality, Mole fraction, Percent by weight, Percent by
	volume, Parts per thousand, Parts per million, Parts per billion, pH, pOH, milli
	equivalents, Milli moles
11	Surface Tension and Viscosity
	1. Determination of surface tension of pure liquid or solution
111	2. Determination of viscosity of figure figure figure of solution
111	Boiling point and Fransition Temperature
	butylalcohol cyclobevanol athyl methyl ketone cyclobevanone
	acetylacetone isobutyl methyl ketone isobutyl alcohol acetonitrile
	benzaldehyde and acetophenone [Boiling points of the chosen organic
	compounds should preferably be within 180 ⁰ Cl
	2. Transition Temperature. Determination of the transition temperature of the
	given substance by thermometric /dialometric method (e.g.
	MnCl2.4H2O/SrBr2.2H2O)
IV	Phase Equilibrium
	1. To study the effect of a solute (e.g. NaCl, succinic acid) on the critical
	solution temperature of two partially miscible liquids (e.g. phenol water
	system) and to determine the concentration of that solute in the given
	phenol-water system
	2. To construct the phase diagram of two component (e.g. diphenylamine
	benzophenone) system by cooling curve method.

Course Code: BCHE 203 (B0204)

Course Title: Quantum Mechanics and Analytical Techniques	
Credits:	4+0
Unit	Topics
Ι	Atomic Structure: Idea of de-Broglie matter waves, Heisenberg uncertainty
	principle, atomic orbitals, Schrodinger wave equation, significance of ψ and
	ψ 2quantum numbers, radial and angular wave functions and probability
	distribution curves, shapes of s, p, d, orbitals. Aufbau and Pauli exclusion
	principles, Hund's multiplicity rule
II	Elementary Quantum Mechanics: de-Broglie hypothesis. Heisenberg
	uncertainty principle, Schrödinger wave equation (time dependent and time
	independent) and its importance, physical interpretation of the wave function,
	Schrödinger wave equation for H-atom, separation into three equations (without derivation) banding wave function concerns of π , π^* , π , π^*
ш	Molecular Sneetroscopy: Introduction: Electromagnetic radiation regions of
111	the spectrum basic features of different spectrometers statement of the Born-
	Oppenheimer approximation degrees of freedom
	Rotational Spectrum: Diatomic molecules. Energy levels of a rigid rotor (semi-
	classical principles), selection rules, spectral intensity, distribution using
	population distribution (Maxwell- Boltzmann distribution) determination of
	bond length, qualitative description of non-rigid rotor, isotope effect.
	Vibrational Spectrum: Infrared spectrum : Energy levels of simple harmonic
	oscillator, selection rules, pure vibrational spectrum, intensity, determination of
	force constant and qualitative relation of force constant and bond energies, effect
	of anharmonic motion and isotope on the spectrum, idea of vibrational
	requencies of different functional groups.
	Raman spectrum: Concept of polarizability, pure rotational and pure vibrational Raman spectra of diatomic molecules selection rules
IV	IV-Visible Spectroscopy ·
1.	Origin of spectra, interaction of radiation with matter, fundamental laws of
	spectroscopy and selection rules, types of electronic transitions, $\lambda \max$,
	chromophore and auxochromes, nBathochromic and Hypsochromic shifts,
	Intensity of absorption, application of Woodward Rules for calculation of λ max
	for the conjugated dienes, alicyclic, homoannualar and heteroannular; extended
	conjugated systems, distinction between cis and trans isomers.
	Infrared Spectroscopy:
	IR Spectroscopy: Fundamental and non-fundamental molecular
	vibrations; Hooke's law, selection rule, IR absorption positions of various functional groups; Effect of H bonding, conjugation, recompany, and ring size on
	IR absorptions: Fingerprint region and its significance application in
	functional group analysis and and interpretation of I R spectra of simple organic
	compounds.
VI	A. Volumetric Analysis
	General principle of acid-base titrations, precipitation titrations, oxidation-
	reduction titrations, iodimetry and complexometric titrations, use of EDTA for
	the determination of Ca^{2+} and Mg^{2+} , Hardness of water, types of EDTA
	titrations and metal ion indicators.
	B. Gravimetric Analysis
	Precipitation from homogenous medium, purity of precipitates, coprecipitation,

	post-precipitation, washing and ignition of precipitates, contamination and their
	removal.
VII	Errors and Evaluation
	Definition of terms, mean and median, precision, standard deviation, relative
	standard deviation, accuracy- absolute error, types of error in experimental data
	determination (systematic), intermediate (or random) and gross, sources of errors
	and the effects upon the analytical results, methods for reporting analytical data,
	statistical evaluation and data -indeterminate errors, use of statistics
VIII	Separation Techniques: Solvent extraction: Classification, principle and
	efficiency of the technique. Mechanism of extraction: extraction by solvation
	and chelation. Technique of extraction: batch, continuous and counter current
	extractions. Qualitative and quantitative aspects of solvent extraction: extraction
	of metal ions from aqueous solution, extraction of organic species from the
	aqueous and non-aqueous media.
	Chromatography: Classification, principle and efficiency of the technique.
	Mechanism of separation: adsorption, partition & ion exchange. Development of
	chromatograms: frontal, elution, and displacement methods.

Course C	Code: BCHE 204 (B020402P)
Course T	itle: Instrumental Analysis
Credits:	0+2
Unit	Topics
Ι	Molecular Weight Determination
	 Determination of molecular weight of a non-volatile solute by Rast method/ Beckmann freezing point method.
	2. Determination of the apparent degree of dissociation of an electrolyte (e.g., NaCl) in aqueous solution at different concentrations by ebullioscopy
II	Spectrophotometry
	 Toverify Beer Lambert Law for KMnO4/K2Cr2O7 and determining the
	concentration of the given solution of the substance from absorption measurement
	2. Determination of pKa values of indicator using spectrophotometry.
	3. Determination of chemical oxygen demand(COD).
	4. Determination of Biological oxygen demand (BOD).
III	Spectroscopy
	 Assignment of labelled peaks in the IR spectrum of the same compound explaining the relative frequencies of the absorptions (C-H,O-H,N-H,C-O,C- N,C-X,C=C,C=O, N=O, CC, stretching frequencies, characteristic bending vibrations are included. Spectra to be provided).
IV	Chromatographic Separations
	1. Paper chromatographic separation of following metal ions: i. Ni (II) and Co (II) ii. Cu(II) and Cd(II)
	2. Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer Chromatography(TLC)
	 Separation and identification of the amino acids present in the given mixture by paper chromatography. Reporting the R_f values TLC separation of a mixture of dyes (fluorescein and methylene blue)

Course Code: BCHE 301 (B020501T)	
Course T	itle: Organic Synthesis A
Credits:	4+0
Unit	Topics
Ι	Chemistry of Alkanes and Cycloalkanes
	A) Alkanes : Classification of carbon atom in alkanes, General methods of
	preparation, physical and chemical properties of alkanes: Wurtz Reaction,
	Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative
	reactivity and selectivity
	B) Cycloalkanes: Nomenclature, methods of formation, chemical reactions,
	Baeyer's strain theory and its limitations. Chair, Boat and Twist boat forms of
	cyclohexane with energy diagrams ring strain in small rings, theory of strain
	less rings. The case of cyclopropane ring, banana bonds.
11	Chemistry of Alkenes
	Methods of formation of alkenes, Addition to $\mathbf{U}=\mathbf{U}$: mechanism (with evidence
	Markownikoff additions) and stereoselectivity; reactions; hydrogenation
	halogenation hydrohalogenation hydration oxymercuration demercuration
	hydroboration-oxidation, epoxidation, svn and anti-hydroxylation.
	ozonolysis, radical addition: HBr addition; mechanism of allylic and benzylic
	bromination in competition with brominations across C=C; <i>E</i> - and <i>Z</i> - alkenes;
III	Chemistry of Alkynes
	Methods of formation of alkynes, Addition of C triple bond C, mechanism,
	reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation,
	halogenations, hydrohalogenation, hydration
IV	Aromaticity and Chemistry of Arenes
	Nomenclature of benzene derivatives, MO picture of benzene, Character of
	arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution
	- halogenation, nitration, sulphonation and Friedel- Craft's Alkylation with their
	mechanism, Directing effects of the groups. Birch reduction, Methods of
	formation and chemical reactions of alkylbenzenes, alkynylbenzenes and
V	biphenyl, naphthalene and anthracene.
v	Classification and nomenclature Monohydric alcohols nomenclature methods
	of formation by reduction of Aldebydes Ketones, Carboxylic acids and Esters
	Hydrogen bonding, Acidic nature, Reactions of alcohols, Dihydric alcohols,
	Trihydric alcohols - nomenclature, methods of formation, chemical reactions of
	glycerol.
VI	Chemistry of Phenols : Nomenclature, structure and bonding, preparation of
	phenols, physical properties and acidic character, Comparative acidic strengths
	of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of
	phenols electrophilic aromatic substitution, acylation and carboxylation.

VII	Chemistry of Ethers and Epoxides: Nomenclature of ethers and methods of
	their formation, physical properties, Chemical reactions cleavage and
	autoxidation,-Synthesis of epoxides, Acid and base-catalyzed ring opening of
	epoxides,
VIII	Chemistry of Organic Halides
	Nomenclature and classes of alkyl halides, methods of formation, chemical
	reactions, Mechanisms of nucleophilic substitution reactions of alkyl halides,
	SN2 and SN1 reactions with energy profile diagrams; Polyhalogencompounds :
	Chloroform, carbon tetrachloride; Methods of formation of aryl halides, nuclear
	and side chain reactions; The addition-elimination and the elimination-addition
	mechanisms of nucleophilic aromatic substitution reactions; Relative reactivities
	of alkyl halides vs allyl, vinyl and aryl halides,

Course C	Course Code: BCHE 302 (B020502T)	
Course T	itle: Rearrangement and Chemistry of group elements	
Credits:	4+0	
Unit	Topics	
Ι	Rearrangements	
	A detailed study of the following rearrangements: Pinacol-pinacolone,	
	BenzilBenzilic acid, and Fries rearrangement	
11	Catalysis	
	General principles and properties of catalysts, homogenous catalysis (catalytic	
	steps and examples) and heterogenous catalysis (catalytic steps and examples)	
	and their industrial applications, Deactivation, or regeneration of catalysts. Phase	
	transfer catalysts, application of zeolites as catalysts. Enzyme catalysis:	
	number	
ш	Chomistry of Main Croup Elements	
	s-Block Elements: Comparative study diagonal relationship salient features of	
	hydrides, solvation and complexation tendencies including their function in	
	biosystems, an introduction to alkyls and aryls.	
	p-Block Elements: Comparative study (including diagonal relationship) of	
	groups 13-17 elements, compounds like hydrides, oxides, oxyacids and halides	
	of group 13-16, hydrides of boron-diborane and higher boranes, borazine,	
	borohydrides, fullerenes, carbides, fluorocarbons, silicates (structural principle),	
	tetrasulphur tetra nitride, basic properties of halogens, interhalogens and	
	polyhalides. Chemistry of Nable Casses: Chemical properties of the pable cases, chemistry	
	of venon structure and bonding in venon compounds	
IV	Chemistry of Transition Elements	
	Chemistry of Elements of First Transition Series -Characteristic properties of	
	d-block elements. Binary compounds (nydrides, carbides and oxides) of the	
	stability of their oxidation states, coordination number and geometry.	
	Chemistry of Elements of Second and Third Transition Series- General	
	radii ovidation states magnetic behavior spectral properties and	
	stereochemistry.	
V	Chemistry of Lanthanides	
	Electronic structure, oxidation states and ionic radii and lanthanide contraction,	
	complex formation, occurrence and isolation, ceric ammonium sulphate and its	
	analyticaluses.	
VI	Chemistry of Actinides	
	Electronic configuration, oxidation states and magnetic properties, chemistry of	
	separation of Np, Pu and Am from U.	

VII	Metal Carbonylsand Nitrosyls
	18-electron rule, preparation, structure and nature of bonding in the mononuclear
	and dinuclear carbonyls and nitrosyls.
VIII	Bioinorganic Chemistry
	Essential and trace elements in biological processes, metalloporphyrins with special reference to heamoglobin and myoglobin. Biological role of alkali and alkaline earth metal ions with special reference to Ca ²⁺ and Mg ²⁺ . Cu in plastocyanin and hemocyanin, Zn in carboxypeptidase and carbonic anhydrase.

Course Code: BCHE 303 (B020503P)	
Course Title: Qualitative Analysis	
Credits: 0+2	
Unit	Topics
Ι	Inorganic Qualitative Analysis
	SemimicroAnalysis cation analysis, separation and identification of ions from
	Groups I,II,III,IV,V and VI, Anion and interfering anion analysis .Mixture
	containing 6 radicals- 2+4 or 4+ or 3+3
II	Elemental analysis and identification of functional groups
	Detection of extra elements (N, S and halogens) and functional groups(phenolic,
	carboxylic, carbonyl, esters, carbohydrates, amines, amides, nitro and anilide) in
	simple organiccompounds.
III	Separation of Organic Mixture
	Analysis of an organic mixture containing two solid components using water,
	NaHCO3, NaOH for separation and preparation of suitablederivatives
IV	Identification of organic compounds
	Identification of an organic compound through the functional group analysis,
	determination of melting point and preparation of suitablederivatives.

Course Code: BCHE 304 (B020601T)		
Course T	Course Title: Organic Synthesis B	
Credits:	4+0	
Unit	Topics	
Ι	Reagents in Organic Synthesis	
	A detailed study of the following reagents in organic transformations, Oxidation	
	with SeO2, Jones Oxidation, PCC, PDC, NaBH4, LiAlH4, DIBAL-H	
II	Organometallic Compounds- Organomagnesium compounds: the Grignard	
	reagents, formation, structure and chemical reactions. Organolithium	
	compounds: formation and chemical reactions.	
111	Chemistry of Aldehydes and ketones: Nomenclature and structure of the	
	carbonyl groups, synthesis of aldenydes and ketones with particular reference to the synthesis of aldenydes from acid chlorides. Dhysical properties. Machanism	
	of nucleophillic additions to carbonyl group with particular emphasis on	
	banzoin aldal Darkin and Wittig reaction Oxidation of aldehydes Cannizzaro	
	reaction MDV Clemmensen Wolff-Kishner An introduction to a b	
	unsaturated aldebyde and ketones	
IV	Carboxylic acids and their Functional Derivatives	
	Nomenclature and classification of aliphatic and aromatic carboxylic acids.	
	Preparation and reactions. Acidity (effect of substituents on acidity) and salt	
	formation, Reactions: Mechanism of reduction, substitution in alkyl or aryl	
	group, stereospecific addition to maleic and fumaric acids. Preparation and	
	reactions of acid chlorides, acid anhydrides, amides and esters, acid and alkaline	
	hydrolysis of esters, trans-esterification.	
V	Organic Synthesis via Enolates	
	Acidity of σ - hydrogens, alkylation of diethyl malonate and ethyl acetoacetate,	
	Synthesis of ethyl acetoacetate: the Claisen condensation, Keto-enol	
	tautomerism of ethyl acetoacetate.	
VI	Organic Compounds of Nitrogen- Preparation of nitroalkanes and nitroarenes,	
	chemical reactions of nitroalkanes. Mechanisms of nucleophilic substitution in nitroarenes and their reductions in acidia, neutral and alkaling media. Dioria acid	
	Separation of a mixture of primary secondary and tertiary amines. Structural	
	features effecting basicity of amines Gabriel- phthalimide reaction Hofmann	
	bromamide reaction. Reactions of amines, electrophilic aromatic substitution in	
	arylamines, reactions of amines with nitrous acid.	
VII	Heterocyclic Chemistry	
	Molecular orbital picture and aromatic characteristics of pyrrole, furan,	
	thiophene and pyridine, Methods of synthesis and chemical reactions with	
	particular emphasis on the mechanism of electrophilic substitution, Mechanism	
	of nucleophilic substitution reaction in pyridine derivatives, Comparison of	
	basicity of pyridine, piperidine and pyrrole. Mechanism of electrophilc	
	substitution reactions of indole, quinoline and isoquinoline.	

Course Code: BCHE 305 (B020602T)	
Course T	itle: Chemical Energetics and Radiochemistry
Credits:	4+0
Unit	Topics
Ι	Thermodynamics-1 :
	First Law of Thermodynamics : Statement , definition of internal energy and
	enthalpy. Heat capacity ,heat capacities at constant volume and pressure and
	their relationship. Joule's law Joule- Thomson coefficient and inversion
	temperature .
	Thermochemistry: Standard state, standard enthalpy of formation Hess's law of
	heat summation and its applications. Heat of reaction at constant pressure and at
	constant volume . Enthalpy of neutralization . Bond dissociation energy and its
	calculation from thermo-chemical data, Kirchhoff's equation.
II	Thermodynamics II
	Second Law of Thermodynamics, Need for the law, different statements of the
	law, Carnot cycle and its efficiency. Carnot theorem. Thermodynamic scale of
	temperature.
	Concept of Entropy, Entropy as a state function, entropy as a function of V
	& T, entropy as a
	function of P&T, Entropy change in ideal gases and mixing of gases. Gibbs and
	Helmholtz Functions
	Gibbs function (G) and Helmhotz function (A) as thermodynamic quantities. A
	&G as criteria for thermodynamic equilibrium and spontaneity, their advantage
	over entropy change,
III	Electrochemistry: specific conductance molar and equivalent conductance,
	measurement of equivalent conductance, variation of molar, equivalent and
	specific conductances with dilution. Migration of ions and Kohlrausch law, ,
	Arrhenius theory of electrolyte dissociation and its limitations. Weak and strong
187	clettrolytes. Ostwald's dilution law, its uses and limitations.
IV	Colligative Properties -Ideal and non-ideal solutions, methods of expressing
	concentrations of solutions, activity and activity coefficient. Diffute solution,
	molecular weight determination. Osmosis law of osmotic pressure and its
	molecular weight determination, Osmosis, law of osmotic pressure and its measurement determination of molecular weight from osmotic pressure
	Flevation of boiling point and depression of freezing Thermodynamic derivation
	of relation between molecular weight and elevation in boiling point and
	depression in freezing point.

Course Code: BCHE 306 (B020603P)		
Course 7	Course Title: Analytical Methods	
Credits:	0+2	
Unit	Topics	
Ι	Gravimetric Analysis	
	1. Analysis of Cu as CuSCN,	
	2. Analysis of Ni as Ni(dimethylgloxime)	
	3. Analysis of Ba asBaSO4.	
II	Paper Chromatography	
	Ascending and Circular Rf of organic compounds, Separation of a mixture of	
	phenylalanine and glycine. Alanine and aspartic acid Leucine and glutamic acid.	
	Spray reagent ninhydrin. Separation of a mixture of D, L alanine, glycine, and L-	
	leucine using n-butanol:acetic acid: water (4:1:5). Spray reagent ninhydrin.	
	Separation of monosaccharaides a mixture of D- galactose and D –fructose using	
	n- butanol: acetone: water (4:5:1). Spray reagent aniline hydrogen phthalate	
III	Thin Layer Chromatography Determination of Rf values and identification of	
	organic compounds: Separation of green leaf pigments (spinach leaves may be	
	used) Preparation of separation of 2,4- dinitrophenylhydrazones of acetone, 2-	
	butanone, hexan-2, and 3-one using toluene and light petroleum (40:60),	
	Separation of a mixture of dyes using cyclohexane and ethyl acetate (8.5:1.5)	
IV	Thermochemistry	
	1. To determine the solubility of benzoic acid at different temperatures and to	
	determine H of the dissolutionprocess	
	2. To determine the enthalpy of neutralization of a weak acid/weak base	
	versus strong base/strong acid and determine the enthalpy of ionization of the	
	weak acid/weak base	
	To determine the enthalpy of solution of solid calcium chloride and calculate the	
	latticeenergyofcalciumchloridefromitsenthalpydatausingBorn-Habercycle	

B.Sc. Botany

DISTRIBUTION OF DIFFERENT COURSES AND CREDITS IN VARIOUS SEMESTERS

Offered By:

Department of Botany Faculty of Science Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Course Code: BOT 101	
Course Title: Basics of Botany	
Credits: 2	+0
Unit	Торіс
Ι	Plant diversity: Study of lower plants
	Study of general characteristics features of Algae, Fungi, Bryophyta, Pteridophyte and
	Gymnosperms.
II	Morphology of angiosperms with general account of types of habit, root, leaf, shoot,
	inflorescence, flower and fruit. Adaptation in plants.
III	Basic concepts of ecology and environment, components of ecosystem, Environmental
	Pollution, its types and mitigation.
IV	Plant physiology and Biochemistry; basic concept of photosynthesis, respiration;
	mineral nutrition in plants; Plant Growth hormone: Auxin, Gibberellin and Ethylene.

Course Co	ode: BOT102 (B040101T)
Course Title: Microbiology & Plant Pathology	
Credits: 4	+0
Unit	Торіс
	A. Introduction to Indian ancient, Vedic and heritage Botany and contribution of
	Indian Botanists, in context with the holistic development of modern science and
I	sesignments / self-study mentioned under Continuous Internal Evaluation (CIE)
I	assignments / sen-study mentioned under Continuous internal Evaluation (CIE).
	B. Microbial Techniques & instrumentation
	Microscopy – Light, phase contrast, electron, scanning and transmission electron
	microscopy, staining techniques for light microscopy. Common equipment of
	microbiology lab and principle of their working – autoclave, oven, laminar air flow,
	centrifuge. Colorimetry and spectrophotometry, immobilization methods, fermentation
	and termenters.
	Cell structure of Eukaryotic and prokaryotic cells. Gram positive and Gram-negative
П	bacteria. Structure of a bacteria: Bacterial Chemotaxis. Bacterial Growth curve, factors
	affecting growth of microbes; measurement of growth; Batch culture, Synchronous
	growth of microbes; Sporulation and reproduction and recombination in bacteria.
	Viruses, general characteristics, viral culture, Structure of viruses, Bacteriophages,
	Structure of T4 &, λ -phage; Lytic and Lysogenic cycles, viroid, Prions &
	mycoplasma& phytoplasma, Actinomycetes & plasmids and their economic uses.
	Proceedings Range of thallus organization in Algae Pigments Reserve food-Reproduction-
ш	Classification and life cycle of-Nostoc Chlorella Volvor
	Hydrodictvon, Oedogonium, Chara; Sargassum, Ectocarpus.
	Economic importance of algae-Role of algae in soil fertility- biofertilizer - Nitrogen
	fixation- Symbiosis;Commercial products of algae -biofuel, Agar.
	Mycology
IV	General characteristics, nutrition, life cycle, Economic importance of Fungi,
	of Mastigenvecting Zugenvecto: <i>Phizenus</i> Assemvecto: Sacharomycas
	Penicillium Peziza Basidiomycotina ·Puccinia Agaricus
	Deuteromycotina: <i>Fusarium, Alternaria,</i> Heterothallism, Physiological specialization,
	Heterokaryosis & Parasexuality.
	Mushroom Cultivation, Lichenology & Mycorrhiza

V	Mushroom cultivation.
	General account of lichens, reproduction and significance; Mycorrhiza: ectomycorrhiza
	and <i>endomycorrhiza</i> and their significance.
	Plant Pathology
	Disease concept, Symptoms, Etiology& causal complex, Primary and secondary
VI	inoculum, Infection, Pathogenicity and pathogenesis, Koch's Postulates. Mechanism of
	infection (Brief idea about Pre-penetration, Penetration and Post-penetration), Disease
	cycle (monocyclic, polycyclic and polyetic). Defense mechanism with special reference
	to Phytoalexin, Resistance- Systemic acquired and induced systemic fungicides-
	Bordeaux mixture, Lime Sulphur, Tobacco decoction, Neem cake & oil
	Diseases and Control
	Symptoms, Causal organism, Disease cycle and Control measures of -Late Blight of
VII	Potato, False Smut of Rice/ Brown spot of riceand 'White rust of Crucifers, Red Rot of
	Sugarcane, Wilting of Arhar, Mosaic diseases on tobacco and cucumber, yellow vein
	mosaic of bhindi; Citrus Canker, Little leaf of brinjal; Damping off of seedlings,
	Disease management: Quarantine, Chemical, Biological, Integrated pest disease
	management
	Applied Microbiology
	Food fermentations and food produced by microbes, amino acids, Production of
VIII	antibiotics, enzymes, alcoholic beverages, organic acid. Mass production of bacterial
	biofertilizers, blue green algae, Azolla and mycorrhiza. Plant growth promoting
	rnizobacieria & biopesticides— <i>Trichoaerma sp.</i> and <i>Pseudomonas</i> , Single cell
	proteins, Organic farming inputs, interobiology of water, Bioremediation, Production of
	biolueis, and biodeterioration of materials.

Course Code: BOT 103 (B040102P)	
Course Title: Techniques in Microbiology & Plant Pathology	
Credits: 0	+2
Unit	<u>Topic * (Minimum Any three from each unit depending on facilities)</u>
Ι	 INSTRUMENTS & TECHNIQUES Laboratory safety and good laboratory practices Principles and application of Laboratory instruments-microscope, incubator, autoclave, centrifuge, LAF, filtration unit, shaker, pH meter. Buffer preparation & titration Cleaning and Sterilization of glassware Preparation of media- Nutrient Agar and Broth Inoculation and culturing of bacteria in Nutrient agar and nutrient broth
	 Preparation of agar slant, stab, agar plate 8. Phenol Coefficient method to test the efficacy of disinfectants BACTERIAL IDENTIFICATION
Π	 Isolation of bacteria. Identification of bacteria. Identification of bacteria. Staining techniques: Gram's, Negative, Endospore, Capsule and Cell Wall. Cultural characteristics of bacteria on NA. Pure culture techniques (Types of streaking). Biochemical characterization:IMViC, Carbohydrate fermentation test, Mannitol motility test, Gelatin liquefaction test, Urease test, Nitrate reduction test, Catalase test, Oxidase test, Starchhydrolysis, Casein hydrolysis.
ш	 MYCOLOGICAL STUDY: 1. Isolation of different fungi: Saprophytic, Coprophilous, Keratinophilic. 2. Identification of fungi by lactophenol cotton blue method. <i>Rhizopus</i>, Saccharomyces, Penicillium, Peziza, Ustilago, Puccinia; Fusarium, Curvularia, Alternaria.

	2. A main Speciment of button store and full means much some Sectioning of sills
	5. Agaricus: Specimens of button stage and fullgrown mushroom; Sectioning of gills
	01 Agaricus.
	4. Lichens: crustose, tonose and truttcose specimens.
IV	PHYCOLOGY:
	1. Type study of algae and Cyanobacteria – <i>Spirullina, Nostoc</i> .Chlorophyceae - <i>Chlorella</i> ,
	Volvox,
	<i>Oedogonium, Cladophora</i> , and <i>Chara;</i> Xanthophyceae – <i>Vaucheria</i> ; Bacillariophyceae –
	PinnulariaPhaeophyceae – Sargassum Rhodophyceae - Polysiphonia
V	EXPERIMENTAL PLANT PATHOLOGY
	1. Preparation of fungal media (PDA) & Sterilization process.
	2. Isolation of pathogen from diseased leaf.
	3. Identification: Pathological specimens of Brown spot of rice, Bacterial blight of
	rice, Loose smut of wheat, Stem rot of mustard, Late blight of potato; Slides of
	uredial, telial, pycnial& aecial stages of Puccinia, Few viral and bacterial plant
	diseases.
VI	PRACTICALS IN APPLIED MICROBIOLOGY-1
V I	1. Isolation of nitrogen fixing bacteria from root nodules of legumes.
	2. Enumeration of rhizosphere to non rhizosphere population of bacteria.
	3. Isolation of antagonistic Pseudomonas from soil.
	4. Microscopic observations of root colonization by VAM fungi.
	5. Isolation of Azospirillum sp. from the roots of grasses.
	6. Isolation of phyllosphere microflora.
	7. Isolation of P solubilizing microorganisms.
VII	PRACTICALS IN APPLIED MICROBIOLOGY-2
V 11	1. Wine production.
	2. Isolation of lactic acid bacteria from curd.
	3. Isolation of lipolytic organisms from butter or cheese.
	4. Immobilized bacterial cells for production of hydrolytic enzymes.
	5. Enzyme production and assay – cellulase, protease and amylase.
	6. Immobilization of yeast.
	7. Isolation of cellulolytic and anaerobic sulphate reducing bacteria.
	8. Isolation and characterization of acidophilic, alkalophilic and halophilic bacteria.
VIII	1. Cultivation of Spirulina, & Chlorella in lab for biofuel
V III	2. Visit to NBAIM, Mau, Varanasi(Kashi)/ IMTECH (Institute of Microbial
	Technology), Chandigarh for viewing Culture Repository
	3. Visit to biofertilizers and biopesticides unit to understand about the Unit
	operation procedures
	4. Mushroom cultivation for Protein
	5. Alcohol production. from Sugarcane Juice.

Course Code: BOT 104 (B040201T)	
Course Title: Archegoniates and Plant Architecture	
Credits: 4	+0
Unit	Торіс
Ι	Introduction to Archegoniates& Bryophytes
	Unique features of archegoniates, Bryophytes: General characteristics, adaptations to
	land habit, Range of thallus organization. Classification (up to family), morphology,
	anatomy and reproduction of Riccia, Marchantia, Anthoceros and Sphagnum.
	(Developmental details not to be included). economic importance of bryophytes.
11	Pteridophytes
	General characteristics, Early land plants (<i>Rhynia</i>). Classification (up to family) with
	examples, Heterospory and seed nabit, stelar evolution, economic importance of
Ш	Cymposperms
111	Classification and distribution of gymnosperms: Salient features of Cycadales
	Ginkgoales. Coniferales and Gnetales, their examples, structure and reproduction:
	economic importance
	Palaeobotany
IV	General account of Cycadofilicales, Bennettitales and Cordaitales; Geological time
	scale; Brief account of process of fossilization & types of fossils and study techniques;
	Contribution of Birbal Sahni
V	Angiosperm Morphology (Stem, Roots, Leaves & Flowers, Inflorescence)
	Morphology and modifications of roots; Stem, leaf and bud. Types of
	inflorescences; flowers, flower parts fruits and types of plocentation. Definition and types of goods
	Plant Anatomy Maristamatic and normanant tissues. Organs (root, stam, and loof)
VI	Anical meristems & theories on anical organization - Anical cell theory Histogen
••	theory Tunica -Corpus theory Secondary growth - Root and stem- cambium (structure
	and function) annular rings. Anomalous secondary growth - <i>Bignonia</i> , <i>Boerhaavia</i> ,
	Dracaena,Nyctanthes
	Reproductive Botany
VII	Plant Embryology, Structure of microsporangium, microsporogenesis, Structure of
	megasporangium and its types, megasporogenesis, Structure and types of female
	gametophyte, types of pollination, Methods of pollination, Germination of pollen grain,
	structure of male gametophyte, Fertilization, structure of dicot and monocot embryo,
	Endosperm, Double fertilization, Apomixis and polyembryony.
VIII	Paivnology: Pollen structure, pollen morphology, pollen allergy, Applied Palynology:
	Provide company and

Course Co	ode: BOT 105 (B040202P)
Course Ti	tle: Land Plants Architecture
Credits: 0-	+2
Unit	Торіс
Ι	Bryophytes:
	Marchantia- morphology of thallus, W.M. rhizoids and scales, V.S. thallus through
	Gemma cup, W.M. gemmae (all temporary slides), V.S. antheridiophore,
	archegoniophore, L.S. sporophyte (all permanent slides). Sphagnum-morphology,
	w.M. leal, mizoids, operculum, perisiome, annulus, spores (temporary sides);
	permanent shoes showing antheridial and archegonial neads, L.S. capsule and
II	Pteridonhytes:
	<i>Lycopodium</i> : Habit stem T. S. stobilus V. S. <i>Selaginella</i> : Habit rhizophore T. S. stem
	T. S. axis with strobilus, V.S. of strobilus, Megasporophyll and microsporophyll.
	<i>Equisetum</i> - Habit, rhizome and stem T.S. and V. S. of strobilus.
	Azolla – Habitat & its structure
III	Gymnosperms
	1. Cycas – seedling, coralloid root and coralloid root T. S., T. S. of leaflet and
	Rachis, micro and megasporophyll, male cone V. S., microsporophyll T. S. entire
	and V. S. of ovule. Pinus - Branch of indefinite growth, spur shoot, T. S of old
	stem and needle R.L.S and T. L. S. of stem, male and female cone, V.S. of male
	and female cone.
	2. Ephedra&Thuja: Habit, stem T. S (young and mature), leaf T. S, male and
IV/	temale strobilus, V. S. of male and female cone, ovule V. S. and seed.
IV	Palaeodotany & Palynology
	2. Visit Birbal Sahni Institute of Palaeosciences or virtual conference with their
	scientists to learn fossilization
	3 Mark and know about Indian geographical sites rich in plant fossils.
V	Angiosperm Morphology
	1. To study diversity in leaf shape, size and other foliar features.
	2. To study monopodial and sympodial branching.
	3. Morphology of Fruits
	4. Inflorescence types- study from fresh/ preserved specimens
	5. Flowers- study of different types from fresh/ preserved specimens
	6. Fruits- study from different types from fresh/preserved specimens
	7. Study of ovules (permanent slides/ specimens/photographs)- types (anatropous,
	orthotropous, amphitropous and campylotropous)
	8. Modifications in Roots, stems, leaves and inflorescences
VI	Plant Anatomy: Normal & Anomalous secondary thickening <i>Bignonia Dracacha</i>
V I	Roerhaaviadiffusa Nyetanthes
	Study of primary and secondary growth in the root and stem of monocots and dicots
	by section cutting and permanent slides.
	Study of internal structure of dicot and monocot leaves.
	Study of structure of stomata.
	Reproductive Botany
VII	1. Structure of anther, microsporogenesis and pollen grains
	2. Structure of ovule and embryo sac development (through slides).
	3. Study of embryo development in monocots and dicots.
	4. Vegetative propagation by means of cutting, budding and grafting exercises.
	5. Study of seed germination.
	6. Study of pollen morphology of the following plants – <i>Hibiscus, Vinca, Balsam, Ixora,</i>
1	<i>Croiaiaria, Bougainvillea</i> by microscopic observation.

	7. Calculation of pollen viability percentage using in vitro pollen germination
	techniques.
VIII	Commercial Uses and Production technology
	1. Azolla production
	2. Production technology of Resins
	3. Production and propagation of Ornamental <i>Pteris</i> , Cycadales, Coniferales for landscaping.
	4. Lab method for qualitative testing/ extraction of Ephedrine, Taxol and Thuja oil

Course Code: BOT 201 (B040301T)	
Course Title: Flowering Plants Identification & Aesthetic Characteristics	
Credits: 4+0	
Unit	Торіс
Ι	Taxonomic Resources & Nomenclature
	Components of taxonomy (identification, nomenclature, classification); Taxonomic
	resources: Herbarium- functions & important herbaria, Botanical gardens, Flora, Keys-
	single access and multi-access.
	Principles and rules of Botanical Nomenclature according to ICN (ranks and names;
	principle of priority, binomial system; type method, author citation, valid-publication).
	Types of classification & Evidences
11	Artificial, natural and phylogenetic. Bentham and Hooker (upto series),
	Engler and Pranti (upto series) angiosperm phylogeny group (APG IV) classification.
111	Identification of Angiospermic families -1: (Families can be chosen University wise
	A study of the following families with emphasis on the morphological neculiarities and
	economic importance of its members (based on Bentham & Hooker's system)
	Ranunculaceae Malvaceae Rutaceae Fabaceae Myrtaceae Cucurbitaceae Rubiaceae
	Asteraceae, Apocynaceae, Acanthaceae, Asclepiadaceae, Solanaceae,
	Identification of Angiospermic families -II: (Families can be chosen University wise
IV	as per local available flora)
	A study of the following families with emphasis on the morphological peculiarities and
	economic importance of its members (based on Bentham & Hooker's system)-
	Amaranthaceae, Euphorbiaceae, Papaveraceae, Apiaceae, Lamiaceae,
	Orchidaceae, Liliaceae, Musaceae, Poaceae.
V	Modern trends in Plant taxonomy:
	Brief idea on Phenetics, Biometrics, Cladistics (Monophyletic, polyphyletic and
	paraphyletic groups; Plesiomorphy and apomorphy).
X7	100LS & SOFTWARES IN PLANT IDENTIFICATION-
V I	Digital Taxonomy (a flore) Description Language for Taxonomy DELTA
	Internet directory for botany
	Computer usage & Android Applications
VII	MS Office: PPT Microsoft Excel data entry graphs aggregate functions formulas and
,	functions, number systems, conversion devices, secondary storage media.
	GPS tagging, Plant Identification Apps.
	Aesthetic Characteristics of Plants:
VIII	Aesthetic characteristics of plants, English, Italian, French, Persian, Mughal and
	Japanese gardens; Features of a garden, Trees, shrubs and shrubberies, climbers and
	creepers. Some Famous gardens of India.

Course Code: BOT 202 (B040302P)		
Course Title: Plant Identification technology		
Credits: 0+2		
Unit	Topic*	
	*(Perform Any three experiments from each unit as per facility)	
Ι	Herbarium: Plant collecting, Preservation and Documentation:	
	Stepwise Practicing Herbarium techniques: a. FIELD EQUIPMENTS, Global Positioning	
	System (GPS) instrument & Collection of any wild 25 plant specimens b.Learn to handle	
	Herbarium making tools c. Pressing and Drying of collected plant specimens d. Special	
	them using Standard method g. Organize them and give Index Register Number	
П	Texonomic Identification using plant structure	
11	a Classify 25 plants on the basis of Taxonomic description (Plant Morphology Anatomy	
	Reproductive parts. Habit, adaptation anomalies) according to Bentham and Hooker	
	natural system of classification in the following families: Malvaceae, Fabaceae	
	(Papilionaceae), Solanaceae, Scrophulariaceae, Acanthaceae, Labiatae (Lamiaceae),	
	Rubiaceae.	
III	Identification during excursions	
	a.Conducting Spot identification (Binomial, Family) of common wild plants from	
	families included in the theoretical syllabus (list to be provided) and making FIELD	
	NOTE BOOK and filling Sample of a page of field-book, used in Botanical Survey of	
	mula.	
	b. Describe/compare flowers in semi-technical language giving V.S. of flowers, T.S. of	
	ovaries, floral diagrams and Floral Formulae. Identify and assign them to their respective	
	families giving reasons.	
IV	COLLECTION, PRESERVATION AND STORAGE OF ALGAE, FUNGI	
	BRYOPHYTES, PTERIDOPHYTES (Two each)	
V	Botanical Nomenclature & reporting Method:	
	a. Give nomenclature to collected plants as per ICN rules and prepare labels as per BSI b. Author Citation, Effective Publication and Principle of Priority: To show a	
	b. Author Citation, Effective rubication and Frinciple of Friority. 10 show a specimen paper on Basic structure of a taxonomic Research published on a new species it	
	taxonomic journal	
VI	COMPUTERS	
	1. Learning to use EXCEL Microsoft PowerPoint and Word., WORKING WITH	
	FOLDER AND WINDOWS UTILITY., CREATE AND MANAGE FILES AND	
	FOLDER TREE,	
	2. Practice browsing different sites using search engines. practice and understand	
	different E-Mail services – Outlook, Yahoo mail, rediffmail etc. Practice Creating	
	E-Mail accounts, Sending, Receiving & Storing of mails,	
	3. Create and Participate in virtual conferencing in an interactive Zoom Meeting	
VII	Computer Application in taxonomy	
	1. Use Taxonomic Softwares (Dichotomous Key)	
	2. Practicals on Phylogenetic analysis	
	3. Make line drawing of Plants for description	
	4.Using of plant identification apps on android phones	
VIII	1. Create a Bonsai of any plant	
	2. Develop a miniature garden	
	 Draw Layouts of various types of gardens Diant Propagation methods practice 	
	4. Frank Propagation methods practice	

Course Coo	de: BOT 203 (B040401T)
Course Tit	e: Economic Botany, Ethnomedicine and Phytochemistry
Credits: 4+	0
Unit	Торіс
Т	Origin and domestication of cultivated plants
I	Centers of diversity of plants, origin of crop plants.Concepts of sustainable
	development; cultivation, production and uses of Cereals, legumes.
п	Botany of oils, Fibers, timber yielding plants & dyes
	Study of the plants with Botanical names, Family, part used, and economic uses
	yielding Edible & essential oils; Sugar, Starch; Fibers; Paper, Fumitories &
	Masticatories, Rubber, Dyes, Timber, bioluci crops.
III	wise)
	Commercial greenhouse cultivation of rose, tomato, bell pepper, cucumber,
	strawberry using Hydroponics.
IV	IPR & Traditional Knowledge
1 V	IPR and WTO (TRIPS, WIPO), Patent Act 1970 and its
	amendments,TIFAC,NRDC,Rights, Infringement, Copyrights, Trademarks,
	Geographical Indications, Traditional Knowledge Digital Library, Protection of
	Traditional Knowledge
v	Ethnobotany
	Muses and other aspects of ethnobotany Importance of ethnobotany in Indian
	systems of medicine (Siddha Ayuryeda and Unani) Role of AYUSH NMPB CI-
	MAP
VI	Medicinal aspects
	Study of common plants used by tribes (Aegle marmelos, Ficus religiosa,, Eclipta
	alba, Ocimum sanctum and Trichopuszeylanicus) Ethnobotanical aspect of
	conservation and management of plant resources, Preservation of primeval forests in
	the form of sacred groves of individual species and Botanical uses depicted in our
	epics.
VII	Plants in primary heatin care, common medicinar plants. <i>Timosporu, Acorus,</i>
V II	Prenaration of drugs for commercial market - Organoleptic evaluation of drugs -
	Microscopic evaluation of drugs - Physical evaluation of drugs - Sources of crude
	drugs – roots, rhizome, bulb, corm, leaves, stems, flowers, fruits and seeds :
	organoleptic study of Adhatodavasica, Andrographis paniculata, Azadirachta
	indica, ,Datura metel, Emblica officinalis, Vinca rosea and Zingiber officinale.
	Herbal Preparations & Phytochemistry :
VIII	Collection of wild herbs - Capsules - compresses - Elixirs - Glycerites - Hydrotherapy
	or Herbal bath - Herbal oils - Liquid extracts or Tincture - Poultices - Salves -
	Slippery elm slurry and gruel - Suppositories - Teas. Glycosides and Flavonoids and
	therapeutic applications. Anthocyanins and Coumarins and therapeutic applications,
	volatile oils and and Alkaloids and pharmacological activities.

Course Code: BOT 204 (B040402P)	
Course Ti	tle: Commercial Botany & Phytochemical Analysis
Credits: 0+2	
Unit	Topic
0	(Douform minimum ony three synaptiments from each unit)
	(Perform minimum any three experiments from each unit)
Ι	Coreals: Wheat (habit skatch I S/TS of grain starch grains micro chemical
	tests): rice (habit sketch, study of paddy and grain, starch grains, micro-chemical
	tests), nee (nabit sketch, study of paddy and grain, statch grains, incro-chemical
	Legume: Pea or ground nut (habit, fruit, seed structure, micro-chemical tests)
	Source of sugars and starches: Sugarcane (habit sketch: cane juice- micro-chemical
	tests): potato (habit sketch, tuber morphology, T.S. of tuber to show localization
	of starch grains, W.M. of starch) grains, micro-chemical tests.
	Tea- tea leaves, tests for tannin
	Mustard- plant specimen, seeds, tests for fat in crushed seeds
	Timbers: section of young stem.
	Jute- specimen, transverse section of stem, tests for lignin on T.S. of stem and study
	of fiber following maceration technique.
	Study of specimens of economic importance mentioned in Unit I-& II
II	Commercial Cultivation
	Development of hydropopics nutrient solutions & running models for cultivation of
	vegetables
	Development of hydroponics nutrient solutions & running models for cultivation of
	fodder
тт	Cultivating Medicinal and aromatic plants & Essential oil extraction
	a. Lemon grass/ Neem/ Zinger /Rose/Mint
IV	Documentation from Traditional Knowledge Digital Library,
1,	Mark the Geographic Indications on Map,
	Understand –NakshtraVatika,Navgrahvatika and develop in your college
	To extract the names of the plants and Botanical uses depicted in our epics.
V	VISIT NISCAIR, New Denn Ethnobotany
v	Study of common plants used by tribes <i>Aegle marmelos Ficus religiosa</i>
	Cynodondactylon
	Visit a tribal area and collect information on their traditional method of treatment
	using crude drugs.
	Familiarize with at least 5 folk medicines and study the cultivation, extraction and its
	medicinal application.
	Observe the plants of ethnobotanical importance in your area.
171	Visit to an Ayurveda college or Ayurvedic Research Institute / Hospital
VI	Instrumentation and nerbal Preparations
	Analyse some active ingredients using chromatography /Spectrophotometry
VII	Pharmacognosy
	Organoleptic studies of plants mentioned in the theory :
	1. Morphological studies of vegetative and floral parts.
	2. Microscopic preparations of root, stem and leaf.
	3. Stomatal number and stomatal index.
	4. Vein islet number.
	5. Palisade ratio.
	6. Fibres and vessels (maceration).
	7. Starch test

	8. Proteins and lipid test
	Phytochemistry:
VIII	Determination of the percentage of foreign leaf in a drug composed of a mixture of
	leaves.
	Dimensions of Calcium oxalate crystals in powdered crude drug.
	Preliminary phytochemical tests for alkaloids, terpenoids, glycosides, volatile oils,
	tannins & resins.
	Any 5 herbal preparations.

Course Code: BOT 301 (B040501T)	
Course Ti	tle: Plant Physiology, Metabolism & Biochemistry
Credits: 4	+0
Unit	Topic
т	Plant water relation, Mineral Nutrition, Transpiration and translocation in
1	phloem
	Importance of water, water potential and its components; Transpiration and its
	significance; Factors affecting transpiration; Root pressure and guttation.
	Criteria of essentiality of elements; Role of essential elements; Symptoms of mineral
	deficiency in major crops, Transmort of iong corose cell membrane, active and necesive transmort. Composition of
	nhloem san girdling experiment: Pressure flow model
	Carbon Oxidation
II	Krebs cycle Glycolysis fate of pyruvate- aerobic and anaerobic respiration and
	fermentation, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative
	decarboxylation of pyruvate, regulation of Krebs cycle, mitochondrial electron
	transport, oxidative phosphorylation, ATP-Synthetase, Chemiosmotic mechanism, P/O
	ratio, cyanide-resistant respiration, factors affecting respiration.
Ш	Nitrogen Metabolism
	Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-
	legumes), Physiology and biochemistry of nitrogen fixation, Ammonia assimilation
IV	Linid Matabalism & Photosynthesis
1 4	Lipid Metabolism: Synthesis and breakdown of triglycerides -oxidation glyoxylate
	cycle, gluconeogenesis and its role in mobilization of lipids during seed germination, -
	oxidation. ;
	Photosynthesis: Pigments, Action spectra and Enhancement effect, Electron transport
	system and Photophosphorylation, C3 & C4 photosynthesis, CAM- Reaction and
	Significance
V	Plant Development, Movements, Dormancy & Responses
•	Developmental roles of Phytohormones (auxins, gibberellins, cytokinins, ABA,
	ethylene.), Photoperiodism (SDP, LDP, Day neutral plants); Phytochrome (discovery
	nhysiology & Dormancy Vernalization
	Biomolecules
VI	<i>Carbohydrates</i> : Nomenclature and classification: Role of monosaccharides (glucose,
	fructose, sugar alcohols – mannitol); Disaccharides(sucrose, lactose), Oligosaccharides
	and polysaccharides (structural-cellulose, hemicelluloses, pectin,; storage - starch,
	inulin).
	Lipids: Storage lipids: Fatty acids structure and functions, Structural lipids:
	Phosphoglycerides; Introduction of lipid micelles, monolayers, bilayers
VII	Proteins : Structure of amino acids; Peptide bonds; Levels of protein structure-primary,

	secondary, tertiary and quaternary; Isoelectric point; Protein denaturation and
	biological roles of proteins
	Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleic
	acids, Nucleic acid denaturation & Re-naturation.
VIII	Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; mechanism of action (activation energy, lock and key hypothesis, induced- fit theory), enzyme inhibition and factors affecting enzyme activity, Allosteric enzymes Introductory concept of -Phytonutrients, Nutraceuticals, dietary supplements and
	anuoxidants

Course Code: BOT 302 (B040502T)		
Course Title: Molecular Biology & Bioinformatics		
Credits: 4	+0	
Unit	Торіс	
T	Genetic material	
1	Miescher to Watson and Crick- historic perspective, Griffith's and Avery's	
	transformation experiments, Hershey-Chase, bacteriophage experiment, DNA	
	structure, types of DNA, types of genetic material. DNA replication (Prokaryotes and	
	eukaryotes): semi-conservative. DNA replication (Prokaryotes and eukaryotes):	
	bidirectional replication, semi-conservative, semi discontinuous RNA priming, Ø (thata) made of replication replication of linear deDNA replicating the 5 and of linear	
	chromosome including replication enzymes	
	Transcription & Regulation of gene expression	
II	Types of structures of RNA (mRNA, tRNA, rRNA). RNA polymerase- various types:	
	Translation, (Prokaryotes and eukaryotes), genetic code. Regulation of gene expression	
	in Prokaryotes: Lac operon; and in Eukaryotes	
ш	Principles & Techniques of genetic engineering	
	Blotting techniques: Northern, Southern and DNA Fingerprinting; Molecular DNA	
	markers i.e. RAPD, RFLP, SNPs; DNA sequencing, PCR and Reverse Transcriptase-	
	PCR. Introductory concepts of -Hybridoma and monoclonal antibodies, ELISA and	
	Immunodetection.	
IV	Applications of Genetic engineering	
	Transgania grong with improved quality traits (FlavrSavr tameta Golden rice);	
	Improved horticultural varieties (Moondust carnations): Role of transgenics in	
	bioremediation (Superbug): Industrial enzymes (Aspergillase): Biosafety concerns	
	Bioinformatics & its applications	
V	Computer fundamentals - programming languages in bioinformatics, role of	
	supercomputers in biology. Historical background. Scope of bioinformatics -	
	Genomics, Transcriptomics, Proteomics, Metabolomics, Molecular Phylogeny,	
	computer aided Drug Design (structure based and ligand based approaches), Systems	
	Biology and Functional Biology. Applications and Limitations of bioinformatics.	
VI	Biological databases :	
1 1	Introduction to biological databases - primary, secondary and composite databases,	
	(DID Surias Dust TrEMDL DDD) matchelia nathway database (KECC EacCys and	
	(FIN, SWISS-FIOL, FIEWIDE, FIDE), Inclabolic pathway database (NEGO, ECOUYC, and MetaCyc), small molecule databases (PubChem.)	
	Data Generation and Data Retrieval	
VII	Generation of data (Gene sequencing, Protein sequencing, Mass spectrometry)	
	Microarray), Sequence submission tools (BankIt, Sequin, Webin); Sequence file	

	format (flat file, FASTA, GCG, EMBL, Clustal, Phylip, Swiss-Prot); Sequence
	annotation; Data retrieval systems (SRS, Entrez)
VIII	Phylogenetic analysis
¥ 111	Introductory concepts of -Similarity, identity and homology, Alignment - local and
	global alignment, pairwise and multiple sequence alignments, alignment algorithms.
	Methods of Alignment (Dot matrix, Dynamic Programming, BLAST and FASTA);
	Phylogenetic analysis: Construction of phylogenetic tree, dendrograms, methods of
	construction of phylogenetic trees.

Course Code: BOT 303 (B040503P)	
Course Ti	itle: Experiments in Physiology, Biochemistry & Molecular Biology
Credits: 0	+2
Unit	Topic*
	*(Perform any three from each unit based on facility)
T	Plant water relation, Mineral Nutrition and translocation in phloem
1	1. Determination of osmotic potential of plant cell sap by plasmolytic method using
	leaves of Rhoeo / Tradescantia.
	2. Osmosis – by potato osmoscope experiment
	Q10.
	4. Experiment to demonstrate the transpiration phenomenon with the bell jar method
	5. Experiment for demonstration of Transpiration by Four-Leaf Experiment:
	6. Structure of stomata (dicot & monocot)
	7. Determination of rate of transpiration using cobalt chloride method.
	8. Experiment to measure the rate of transpiration by using Farmer's Potometer
	9. Experiment to measure the rate of transpiration by using Ganong's potometer
	10. Effect of Temperature on membrane permeability by colorimetric method.
	11. Study of mineral deficiency symptoms using plant material/photographs.
11	Nitrogen Metabolism, Photo Synthesis & Respiration
	1. A basic idea of chromatography. Principle, paper chromatography and column chromatography: demonstration of column chromatography
	2 Separation of plastidial pigments by solvent and paper chromatography.
	3. Estimation of total chlorophyll content from different chronologically aged leaves
	(young, mature and senescence) by Arnon method.
	4. Effect of HCO ₃ concentration on oxygen evolution during photosynthesis in an
	aquatic plant and to find out the optimum and toxic concentration (either by volume
	measurement or bubble counting).
	5. Measurement of oxygen uptake by respiring tissue (per g/hr.)
	6.Determination of the RQ of germinating seeds.
	/. Effect of light intensity on oxygen evolution in photosynthesis using Wilmott
III	Plant Development Movements Dormancy & Responses
	1. Geotropism and phototropism — Klinostàt
	2. Hydrotropism
	a. Measurement of growth — Arc and Liver Auxonometer
	3. To study the phenomenon of seed germination (effect of light).
	4. To study the induction of amylase activity in germinating grains.
	5. Test of seed viability by TTC method.
	6. To study the effect of different concentrations of IAA on Avena
	coleoptile elongation (IAA bioassay)
	Techniques for biochemical analysis
IV	1. Weighing and Preparation of solutions -percentage, molar & normal solutions,

	dilution from stock solution etc.
	2. Separation of amino acids by paper chromatography.
	3. Detection of organic acids: citric, tartaric, oxalic and malic from laboratory
	samples.,
	4. Qualitative Analysis of carbohydrates,
	5. Estimation of reducing sugar by anthrone method,
	6. Qualitative Analysis of Lipids
	7. Quantative analysis of Anino acids and Proteins 8. Quantitative Analysis of Nucleic Acids
	9. Analysis of dietary supplements, nutraceuticals & antioxidants
	10. Testing of adulterants in food items.
X 7	Genetic material
V	1. Instruments and equipments used in molecular biology.
	2. Preparation of LB medium and cultivating E.coli on it.
	3. Isolation of Genomic DNA
	4 Isolation of DNA from plants
	5 Examination of the purity of DNA by agarose gel electrophoresis
	6 Quantification of DNA by UV-spectrophotometer
	7 Estimation of DNA by diphenylamine method
	7. Estimation of DIVA by diplicitylamine method.
VI	Preparation of models/ charts:
	1. Study of experiments establishing nucleic acid as genetic material (Avery et al.
	Griffith's, Hershey & Chase's and Fraenkel &Conrat'sexperiments)through
	photographs
	2. Numericals based on DNA re-association kinetics (melting profiles and Cot curves)
	3. Study of DNA replication through photographs: Modes of replication - Rolling
	circle, Theta and semi-discontinuous ; Semiconservative model of replication
	(Messelson and Stahl's experiment); Telomerase assisted end-replication of linear
	DNA
	4. Study of structures of : tRNA (2D and 3D); prokaryotic RNA polymerase and
	eukaryotic RNA polymerase II through photographs
	5. Study of the following through photographs: Assembly of Spliceosome machinery;
	Splicing mechanism in group I & group II introns; Ribozymes and Alternative
	splicing
	o. Understanding the regulation of factose (fac) operon (positive & negative regulation)
	and hyprophan (up) operon (Repression and De-repression & Attenuation) unough
	7 Understanding the mechanism of RNA i by photographs
VII	Genetic Engineering
,	1 Isolation of protoplasts
	2. Construction of restriction map of circular and linear DNA from the data
	provided.
	3. Isolation of plasmid DNA.
	4. Restriction digestion and gel electrophoresis of plasmid DNA (demonstration/
	photograph).
	5. Calculate the percentage similarity between different cultivars of a species using
	RAPD profile. Construct a dendrogram and interpret results.
	6. Agarose gel analysis of plasmid DNA
	7. Restriction digestion of plasmid DNA -Demonstration of PCR
	Applications of Genetic engineering
VIII	1. ELISA Test,
	2. Viability tests of cells

3. Study of methods of gene transfer through photographs: Agrobacterium-
mediated, direct gene transfer by electroporation, microinjection, microprojectile
bombardment.
4. Study of steps of genetic engineering for production of Bt cotton, Golden rice,
FlavrSavr tomato through photographs.

Course Code: **BOT 304** (B040504R)

Course Title: Project in Botany for Pre-graduation

Course Co	ode: BOT 305 (B040601T)
Course Ti	tle: Cytogenetics, Plant Breeding & Nanotechnology
Credits: 4	+0
Unit	Торіс
Ι	Cell biology Structure and function of cell wall, plasma membrane, ribosomes, Endoplasmic reticulum, golgi apparatus, mitochondria, chloroplast, lysosomes, peroxisomes and cell inclusions - Organization of nucleus: nuclear envelope, nucleoplasm and nucleolus. Chromosomal nomenclature- chromatids, centromere, telomere, satellite, secondary constriction.Organization of chromosomes- Nucleic acid and histones- types and classification. Lampbrush chromosomes and polytene chromosomes- Karyotype and idiogram.Cell cycle: G0, G1, S and G2 phases – mitosis: open and closed mitosis – amitosis - meiosis. Variation in Chromosome number (Numerical aberrations)-anueploidy and Euploidy-haploidy, polyploidy- significance (Structural aberrations) - deletion, duplication, inversion and translocation.
II	Genetics Chromosome theory of inheritance, crossing over and linkage; Incomplete dominance and codominance; Interaction of Genes; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy, Polygenic inheritance; Extra-nuclear Inheritance, Linkage, crossing over, Concept of sex determination and Sex chromosomes; Patterns of Sex determination in plants
III	Plant breeding

	Selection - mass selection, pure line selection and clonal selection. Genetic basis of selection methods, Hybridization: Procedure of hybridization, inter generic, inter specific, inter varietal hybridization with examples. Composite and synthetic varieties, Male sterility, Heterosis and its exploitation in plant breeding, Mutation, Introductory concepts of -Breeding for pest, pathogenic diseases and stress resistance.
IV	Biostatistics: Definition, statistical methods, basic principles, variables- measurements, functions, limitations and uses of statistics. Biometry: Data, Sample, Population,random sampling, Frequency distribution- definition only, Central tendency– Arithmetic Mean, Mode and Median; Measurement of dispersion–Coefficient of variation, Standard Deviation, Standard error of Mean; Test of significance: chi- square test for goodness of fit.
V	Plant tissue culture Principles components and techniques of <i>in vitro</i> plant cultures. Callus cultures. Cell
•	culture, cell suspension cultures, Embryogenesis and organogenesis,
	Protoplastisolation and culturing of protoplast- principle and application, regeneration of protoplasts, protoplast fusion and somatic hybridization- selection of hybrid cells,
	Somaclonal variation, Plant secondary metabolites production.
	Nanotechnology
VI	Fundamentals of nanoscale self-assembly process involved in important functional
	and organelles nanoscale assembly of cellular components (cell membrane and
	liposomes). Nanoscale assembly of microorganisms (virus). Advantages and
	applications of biologically synthesized nanomaterials.
	Artificial Intelligence in Plant Sciences
VII	Introductory concepts of -Big Data Analytics, 3-D Printing, Machine learning,
	Algorithms of Machine Learning, Expert systems and Fuzzy logic.
VIII	Educational software- INFLIBNET, NICNET, BRNET, internet as a knowledge
	repository- google scholar, science direct. resource management, weather forecasting.
	ICT Applications for different crops and horticulture.

Course Code: BOT 306 (B040602T)	
Course Ti	tle: Ecology & Environment
Credits: 4	+0
Unit	Торіс
I	Natural resources & Sustainable utilization : Land Utilization, Soil degradation and management strategies; Restoration of degraded lands. Water, Wetlands; Threats and management strategies, Ramsar sites, Forests: Major and minor forest products; Depletion, Biological Invasion, Energy: Renewable and non-renewable sources of energy, Contemporary practices in resource management.
II	Ecology & Ecosystem Definition of Ecology, Ecological Factors, Positive and negative interactions. Ecosystem – Concept of an ecosystem-structure and function of an ecosystem.Abiotic and biotic com-Energy flow in an ecosystemEcological Succession-Definition & types. Processes and types (autogenic,allogenic,autotrophic,heterotrophic,primary& secondary), Hydrosere and Xerosere.Food chains and food webs, Ecological pyramids, production and productivity;Andcomponents.Types of ecosystems: Forest Ecosystem, Grassland,Crop land, aquatic Ecosystems Ecological Adaptations – Hydrophytes, Xerophytes, Halophytes, Epiphytes.
	Soil Formation, Properties & Conservation

III	Soil: Origin, Formation, composition, Soil types, Soil Profile, Soil Microorganisms, soil processes, Soil Erosion, Biogeochemical cycles of carbon, water, Soil Conservation: Biological– Contour farming, Mulching, Strip cropping, Terracing and Soil reclamation.
IV	Biodiversity and its conservation:Definition -genetic, speciesand ecosystem diversity.Value of biodiversity:hotspots ofBiodiversity threats to biodiversity, Biotic communities and populations, theircharacteristics and dynamics. Endemic and endangered species of plants inIndia.Ecologicalniche,ecotypes,ecological indicators.Conservation of Biodiversity:Ex-situ and in-situ conservation, Introduction to Red data book, botanical gardens,National park, Sanctuaries and Bioreserves. Role of Seed Bank and Gene BankValuing plant resources,ecotourism, Role ofBSI.
V	Phytogeography: Introductory concepts of -Biogeographic regions of India & world, Agroecological & Floristic zones of India. Natural vegetation of India, static and dynamic plant geography, basic principles governing geographical distribution of plants, Vegetational types in Uttar Pradesh.
VI	Environmental audit & Sustainability Introductory concepts of environmental audit; Guidelines of environmental audit; Concept of energy and green audit, Concept of Sustainable Agriculture; India's environment action programme: issues, approaches and initiatives towards Sustainability: Sustainable development in practice.
VII	 Pollution, Waste management & Circular Economy Environmental pollution, Environmental protection laws, Bioremediation, Activated Sludge Process (ASP) – Trickling Filters – oxidation ponds, fluidized bed reactors, membrane bioreactor, digesters, fixed film reactors, bioscrubbers, biotrickling filters; case study: Ganga Action Plan; implementation of CNG;Waste- Types, collection and disposal, Recycling of solid wastes (hazardous & non-hazardous) - classification, collection and segregation, Incineration, Pyrolysis and gasification, Sanitary landfilling; composting, Biogas production.
VIII	Environmental ethics, Carbon Credits & Role of GIS Introduction to Carbon credit: concept, exchange of carbon credits. Carbon sequestration, importance, meaning and ways. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Applications and case studies of remote sensing and GIS in land use planning, forest resources & agriculture studies.

Course Code: BOT 307 (B040603P)	
Course Title: Cytogenetics, Conservation & Environment management	
Credits: 0+2	
Unit	Торіс
Ι	Cell biology
	1. Study of plant cell structure with the help of epidermal peal mount
	ofOnion/Rhoeo/Crinum
	2. Measurement of cell size by the technique of micrometry.
	3. Counting cells per unit volume with the help of haemocytometer(Yeast/pollen grains)
	4. Determination of mitotic index and frequency of different mitotic stages in pre-
	fixed root tips of Allium cepa.
Π	Genetics
	1. Monohybrid cross (Dominance and incomplete dominance)

	2 Dihybrid cross (Dominance and incomplete dominance)
	3. Gene interactions (All types of gene interactions mentioned in the syllabus)
	5. Oche interactions (An types of gene interactions mentioned in the synabus)
	a. Recessive episiasis 9. 5. 1.
	b. Dominant epistasis 12: 5: 1 $C_{12} = 1$
	c. Complementary genes 9: 7
	d. Duplicate genes with cumulative effect 9: 6: 1
	e. Inhibitory genes 13: 3
	4. Observe the genetic variations among inter and intra specific plants.
	5. Demonstration of Breeding techniques-Hybridization, case studies of
	mutation, polyploidy, emasculation experiment.
III	Biostatistics:
	1.Univariate analysis of statistical data: Statistical tables, mean, mode, median,
	standard deviation and standard error (using seedling population / leaflet size).
	2. Calculation of correlation coefficient values and finding out the probability.
	3 Determination of goodness of fit in Mendellian and modified mono-and dihybrid
	ratios (3:1, 1:1, 9:3:3:1, 1:1:1:1, 9:7, 13:3, 15:1) by Chi-square analysis and comment
	on the nature of inheritance
	2 Computer application in biostotictica. MS Excel and SDSS
117	S. Computer application in diostatistics - Mis Excer and SFSS
11	Fiant ussue culture
	1. Familiarization of instruments and special equipments used in the plant tissue culture
	experiments
	2. Preparation of plant tissue culture medium, and sterilization, Preparation of stock
	solutions of nutrients for MS Media.
	3. Surface sterilization of plant materials for inoculation (implantation in the medium)
	4. Micropropagation of potato/tomato/ - Demonstration
	5. Protoplast isolation and culturing – Demonstration
	Ecology & Environment
V	1. Ecological Adaptations: Hydrophytes, Xerophytes, Halophytes, Epiphytes and
	Parasites
	2. Study of morphological adaptations of hydrophytes and xerophytes (four
	each).
	3. Study of biotic interactions of: Stem parasite (Cuscuta), Root parasite
	(Orobanche) Epiphytes, Predation (Insectivorous plants).
	4. Observation and study of different ecosystems mentioned in the syllabus.
	5. Field visit to familiarize students with ecology of different sites
VI	Soil Formation, Properties & Conservation
	1 Determination of pH of various soil and water samples (pH meter universal
	indicator/Lovibond comparator and pH paper)
	2 Analysis for carbonates chlorides nitrates sulphates organic matter and base
	deficiency from two soil samples by rapid field tests
	2 Determination of organic matter of different soil semples by Walklay & Plack
	5. Determination of organic matter of different son samples by warkley & Diack
	4 Sail Destination method.
	4. Soli Profile study
	5. Soli types of India-Map
	Biodiversity and Phytogeography:
VII	1. Study of community structure by quadrat method and determination of (1)
	Minimal size of the quadrat, (11) Frequency, density and abundance of
	components (to be done during excursion/field visit).
	2. Marking of vegetation types of India, World & Uttar Pradesh on maps
	3. Phytogeographical areas of India
VIII	Pollution & Waste management
	1. Study of instruments used to measure microclimatic variables: Soil thermometer,
	maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain
	gauge and lux meter

2. Estimation of chloride and dissolved oxygen content in water sample
3. Comparative anatomical studies of leaves form polluted and less polluted areas.
4. Measurement of dissolved O2 by azide modification of Winkler's method.
5. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.
6. Microbiological assessment of drinking water using MPN technique- water from well, river, water supply department and packaged drinking water
7. Making kitchen waste from compost/vermicompost by Enzymes/Bio decomposer/ Whey with dung.
Climate Change, Carbon Credits & Role of GIS
1. Conducting Waste Audit of your Institution -Demo
2. Green auditing of the College/University -Demo

Course Code: BOT 308 (B040604R)	
Course Title: Project in Botany for Graduation	
edits: 0+4	
SUGGESTIVE LIST OF PROJECTS	
Prepare beds for growing nursery for herbs, shrubs and trees.	
Develop Green house facility in college and grow plants	
Develop hydroponics facility in college and grow plants.	
Develop botanical garden in the college with labelling	
Vertical gardens, roof gardens.	
Culture & art of making bonsai.	
Computer Aided Designing (CAD) for outdoor and indoor scaping Exposure to	
CAD (Computer Aided Designing)	
Phytochemical Analysis of Medicinal plants	
Bio composting and Vermicomposting.	
Performing Aromatherapy by essential Oils	

B.Sc. Zoology

DISTRIBUTION OF DIFFERENT COURSES AND CREDITS IN VARIOUS SEMESTERS

Offered By:

Department of Zoology Faculty of Science Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Course Code :	ZOO 101 (B050101T)
Course Title:	Basics of Zoology
Credits: 2+0	
Unit	Topics
Ι	Basic Concepts of Zoology and Scope of Zoology
	1. Role of Zoology in Amelioration of Human problems (Vector, Parasite and
	Pest Control)
	2. Application of Zoology in Everyday life: Domestication of Livestock, Poultry,
	Fisheries, Prawn Culture, Pearl culture Apiculture, Sericulture, Vermiculture
II	Origin of Life on Earth, Products of evolutionary process
	1. Origin of life on Earth: Arrival of simple form from primordial chemicals,
	Multicellularity: from simple collections of poorly differentiated cells to
	complex body plans.
	2. Biological diversity, Systematics and taxonomy, Species concept.
	3. Nomenclature and utility of scientific names.
	4. Classification: morphological and evolutionary (molecular)
	5. Phylogenetic Relationship of taxa
III	Structural and Functional Unit of Life
	1. Cell Theory
	2. Macromolecules in Cell
	3. Flow of energy and Information in Cell
	4. Concept of continuity of life
** /	5. Concept of Inheritance: Phenotype, Genotype, Genes, Alleles and Linkage
IV	Interaction between Environment and Human population
	1. Flow of energy- Trapping Solar energy, Energy pathway, Food Chain, Food
	2. Biogeochemical Cycles
	3. Natural Resources and their Conservation
	4. Anthropogenic Effects- Acid rain, Global Warming, Ozone Depletion,
	Pollution.

Course Code:: Z	OO 102 (B050101T)
Course Title: Cy	tology
Credits: 4+0	
Unit	Торіс
Ι	Structure and Function of Cell Organelles I
	Plasma membrane: chemical structure—lipids and proteins
	• Endomembrane system: protein targeting and sorting, endocytosis, exocytosis
	Introduction to all national Biologists (Zoologists) who have
	contributed/contributing to Zoological and Life Sciences as a mark of
	tribute to ancient and modern biology will be included as part of the
	Continuous Internal Evaluation (CIE)
II	Structure and Function of Cell Organelles II
	• Cytoskeleton: microtubules, microfilaments, intermediate filaments
	Mitochondria: Structure, oxidative phosphorylation
	Peroxisome and ribosome: structure and function
III	Nucleus and Chromatin Structure
	• Structure and function of nucleus in eukaryotes
	• Chemical structure and base composition of DNA and RNA
	• DNA supercoiling, chromatin organization, structure of chromosomes
	• Types of DNA and RNA
IV	Cell cycle, Cell Division and Cell Signaling
	• Cell division: mitosis and meiosis
	• Cell cycle and its regulation, apoptosis, Signal transduction: intracellular
	signaling and cell surface receptors via G-protein linked receptors, JAK-
V	SIAI pathway Mandalian and Say Determination
v	Mendelism and Sex Determination
	• Basic principles of heredity: Mendel's laws, mononybrid and dinybrid crosses
	Complete and incomplete Dominance,
	• Penetrance and expressivity,
	• Genic Sex-Determining Systems, Environmental Sex Determination, Sex
	Sex linked characteristics and Decome communitien
VI	• Sex-Initial characteristics and Dosage compensation
V I	• Extensions of Mendelism, Genes and Environment
	Extensions of Mendensin: Multiple Aneres, Gene Interaction, Cytoplasmia Inharitanea, Canatia Matamal Effacta
	Cytopiasinic initiatice, Genetic iviaternal Effects, Genemic Imprinting Anticipation
	 Interaction Retwoon Genes and Environment: Environmental Effects on Gene
	• Interaction Detween Genes and Environment. Environmental Encets on Gene Expression Inheritance of Continuous Characteristics
VII	Human Chromosomes and Patterns of Inheritance
V II	• Human karvotype Chromosomal anomalies: Structural and numerical
	aberrations with examples
	 Pedigree analysis
VIII	Immune System and its Components
	• Historical perspective of Immunology, Innate and Adaptive Immunity,
	Structure and functions of different classes of immunoglobulins,
	Hypersensitivity,
	• Immune system: innate and adaptive immunity, clonal selection, complement
	system,
	Humoral immunity and cell mediated immunity,
	• Immunoglobulin and T-cell receptor genes: organization of Ig gene loci,
	molecular mechanism of generation of antibody diversity
	HLA complex: organization, class I and II HLA molecules, expression of HLA genes

Course Code: ZO	DO 103 (B050102P)
Course Title: Cel	l Biology & Cytogenetics Lab
Credits: 0+2	
Unit	Торіс
Ι	 To study different cell types such as buccal epithelial cells, neurons, striated muscle cells using Methylene blue. To study the different stages of Mitosis in root tip of onion. To study the different stages of Meiosis in grasshopper testis. To prepare molecular models of nucleotides, amino acids, dipeptides using bead and stick method. To check the permeability of cells using salt solution of different concentrations.
II	 To study different mammalian blood cell types using Leishman stain. Determination of ABO Blood group Cell counting and viability test from splenocytes of farm bred animals/cell lines. Enumeration of red blood cells and white blood cells using haemocytometer
III	 Study of mutant phenotypes of <i>Drosophila</i>. Preparation of polytene chromosomes. Study of sex chromatin (Barr bodies) in buccal smear and hair bud cells (Human). Preparation of human karyotype and study the chromosomal aberrations with respect to number, translocation, deletion etc. from the pictures provided. To prepare family pedigrees.
IV	Virtual Labs https://www.vlab.co.in https://zoologysan.blogspot.com www.vlab.iitb.ac.in/vlab www.onlinelabs.in www.powershow.com, https://vlab.amrita.edu https://sites.dartmouth.edu

Course Code: ZOO 104 (B050201T)

Course Title:	Biochemistry and Physiology
Credits: 4+0	Dioeneninsery und ringstorogy
Unit	Tonic
I	Structure and Function of Biomolecules
	 Structure and Biological importance of carbohydrates (Monosaccharides, Disaccharides, Polysaccharides and Glycoconjugates) Lipids (saturated and unsaturated fatty acids, Tri-acylglycerols, Phospholipids, Glycolipids, Steroids) Structure, Classification and General properties of α-amino acids; Essential and non-essential α-amino acids, Levels of acception in proteiner Simple and conjugate proteiner.
П	Levels of organization in proteins; Simple and conjugate proteins
11	 Nomenclature and classification of enzymes; Cofactors; Specificity of enzyme action; Isozymes; Mechanism of enzyme action; Enzyme kinetics; Factors affecting rate of enzyme-catalyzed reactions; Derivation of Michaelis-Menten equation, Concept of Km and Vmax, Lineweaver-Burk plot; Enzyme inhibition; Allosteric enzymes and their kinetics: Regulation of enzyme action
III	Metabolism of Carbohydrates and Linids
	 Metabolism of Carbohydrates: glycolysis, citric acid cycle, gluconeogenesis, phosphate pentose pathway Glycogenolysis and Glycogenesis Lipids Biosynthesis of palmitic acid; Ketogenesis, β-oxidation and omega -oxidation of saturated fatty acids with even and odd number of carbon atoms
IV	Metabolism of Proteins and Nucleotides
	 Catabolism of amino acids: Transamination, Deamination, Urea cycle Nucleotides and vitamins Review of mitochondrial respiratory chain, Oxidative phosphorylation, and its regulation
	Digestion and Respiration
	 Structural organization and functions of gastrointestinal tract and associated glands Mechanical and chemical digestion of food; Absorptions of carbohydrates, lipids, proteins, water, minerals and vitamins; Histology of trachea and lung, Mechanism of respiration, Pulmonary ventilation; Respiratory volumes and capacities; Transport of oxygen and carbon dioxide in blood,Respiratory pigments, Dissociation curves and the factors influencing it; Control of respiration
VI	Circulation and Excretion
	 Components of blood and their functions Haemostasis: Blood clotting system, Blood groups: Rh factor, ABO and MN Structure of mammalian heart, Cardiac cycle; Cardiac output and its regulation, Electrocardiogram, Blood pressure and its regulation Structure of kidney and its functional unit; Mechanism of urine formation
VII	Nervous System and Endocrinology
	 Structure of neuron, resting membrane potential Origin of action potential and its propagation across the myelinated and unmyelinated nerve fibers Types of synapse Endocrine glands pipel pituitary thyroid perpethyroid perpendent advection.
	• Endocrine grands - princal, pluntary, myrold, parathyrold, pancreas, adrenal; hormones secreted by them

Classification of hormones; Mechanism of Hormone action
Muscular System
• Histology of different types of muscle,
• Ultra structure of skeletal muscle;
• Molecular and chemical basis of muscle contraction;
Characteristics of muscle twitch; Motor unit, summation and tetanus

Course Code: Z	COO 105 (B050201T)
Course Title: P	hysiological, Biochemical &Hematology Lab
Credits: 2+0	· · ·
Unit	Торіс
Ι	1. Estimation of haemoglobin using Sahli's haemoglobinometer
	2. Preparation of haemin and haemochromogen crystals
	3. Recording of blood pressure using a sphygmomanometer
	4. Recording of blood glucose level by using glucometer
	5. Preparation of molecular models of amino acids, dipeptides etc.
II	1. Study of permanent slides of Mammalian skin, Cartilage, Bone,
	2. Spinal cord, Nerve cell, Pituitary, Pancreas, Testis, Ovary, Adrenal, Thyroid and
	Parathyroid
	3. Recording of simple muscle twitch with electrical stimulation (or Virtual)
	4. Demonstration of the unconditioned reflex action (Deep tendon reflex such as
	knee jerk reflex)
III	1. Ninhydrin test for -amino acids.
	2. Benedict's test for reducing sugar and iodine test for starch.
	3. Test for sugar and acetone in urine.
	4. Qualitative tests of functional groups in carbohydrates, proteins and lipids.
	5. Paper chromatography of amino acids.
	6. Action of salivary amylase under optimum conditions
IV	Virtual Labs
	1. https://www.vlab.co.in
	2. https://zoologysan.blogspot.com
	3. www.vlab.iitb.ac.in/vlab
	4. www.onlinelabs.in
	5. www.powershow.com
	6. <u>https://vlab.amrita.edu</u>
	7. https://sites.dartmouth.edu

Course Code:	ZOO 201 (B050301T)
Course Title:	Molecular Biology and Bioinstrumentation Biotechniques
Credits: 4+0	
Unit	Торіс
Ι	Process of Transcription
	• Fine structure of gene
	RNA polymerases
	Transcription factors and machinery
	Formation of initiation complex
	• Initiation, elongation and termination of transcription in prokaryotes and
	eukaryotes
II	Process of Translation
	• The Genetic code
	• Ribosome
	Factors involved in translation
	• Aminoacylation of tRNA, tRNA-identity, aminoacyl Trna synthetase
	• Initiation, elongation and termination of translation in prokaryotes and eukaryotes
III	Regulation of Gene Expression I
	• Regulation of gene expression in prokaryotes: <i>lac</i> and <i>trp</i> operons in <i>E. coli</i>
	• Regulation of gene expression in eukaryotes: Role of chromatin in gene
	expression
	• Regulation at transcriptional level, Post-transcriptional modifications: Capping,
	Splicing, Polyadenylation, RNA editing.
IV	Regulation of Gene Expression II
	• Regulation of gene expression in eukaryotes:
	• Regulation at translational level, Post- translational modifications: protein folding
	etc.
	Intracellular protein degradation
	Gene silencing, RNA interference (RNAi)
V	Principle and Types of Microscopes
	Principle of Microscopy and Applications
	• Types of Microscopes: light microscopy, dark field microscopy, phase-contrast
	microscopy,
	Fluorescence microscopy, confocal microscopy, electron microscopy
VI	Centrifugation and Chromatography
	• Principle of Centrifugation:
	• Types of Centrifuges: high speed and ultracentrifuge
	• Types of rotors: Vertical, Swing-out, Fixed-angle etc.
	• Principle and Types of Chromatography: paper, thin layer, columnion-
	exchange, gel filtration, HPLC, affinity
VII	Spectrophotometry and Biochemical Techniques
	• Colorimetry and spectrophotometry: Beer-lambert law, absorption spectrum
	• Biochemical techniques: Measurement of pH,
	• Preparation of buffers and solutions
N/III	Measurement, applications and safety measures of radio-tracer techniques
VIII	Molecular Lechniques
	• Nucleic acid iractionation, detection by electrophoresis, DNA sequencing,
	directed mutogenesis PELP
	Molecular cloning genomic libraries. Gene transfer techniques: electroneration
	• microiniection
	 Detection of proteins PAGE ELISA Western blotting
	 Detection of proteins, i AGE, BEISA, western blotting, Hybridoma technology
	- Hyondoma termology

Course Code: ZOO 202 (B050302P)

Course Title: Bioinstrumentation & Molecular Biology Lab

Credits: 0+2

Unit	Торіс
Ι	 To study the working principle and Simple, Compound and Binocular microscopes. To study the working principle of various lab equipments such as pH Meter, Electronic balance, vortex mixer, use of glass and micropipettes, Laminar flow,
	Incubator shaker, Waterbath, Centrifuge, Chromatography apparatus, etc.
П	 To prepare solutions and buffers. To learn the working of Colorimeter and Spectrophotometer. Demonstration of differential centrifugation to fractionate different components in a mixture
III	 To prepare dilutions of Riboflavin and verify the principle of spectrophotometer. To identify different amino acids in a mixture using paper chromatography. Demonstration of DNA extraction from blood or tissue samples. To estimate amount of DNA using spectrophotometer.
IV	Virtual Labs www.labinapp.com www.uwlax.edu www.labster.com www.onlinelabs.in www.powershow.in https://vlab.amrita.edu info@premiereducationaltechnologyies.com https://li.wsu.edu

Course Code: ZOO 203 (B050401T)

Course Title: Gene Technology and Human Welfare

Credits: 4+0

Unit	Tonic
Unit	
Ι	Principles of Gene Manipulation
	Recombinant DNA Technology
	 Restriction Enzymes, DNA modifying enzymes, Cloning Vectors, Ligation Gene transfer techniques, Gene therapy
	 Selection and identification of recombinant cells
II	Applications of Genetic Engineering
	• Single cell proteins.
	 Biosensors, Biochips,
	• Crop and live stock, Improvement, Development of transgenic organisms,
	Development of DNA drugs and, vaccines.
III	Enzyme Technology
	Microbial culture
	 Methods of enzyme production.
	 Immobilization of enzymes,
	Applications
IV	DNA Diagnostics
	• Genetic analysis of human diseases, detection of known and unknown mutations
	DNA fingerprinting
	Concept of pharmacogenomics and pharmacogenetics
	Personalized medicine—optimizing drug therapy
V	BIOSTATISTICS I
	Calculations of mean, median, mode, variance, standard
	 Deviation, Concepts of coefficient of variation. Skewness, Kurtosis
	Elementary idea of probability and application
VI	Biostatistics II
	• Data summarizing: frequency distribution, graphical.presentation—bar, pie
	diagram, histogram,
	• Tests of significance: one and two sample tests, t-test and Chi-square test
VII	Basics of Computers
	• Basics (CPU I/O units) and operating systems
	 Concept of homepages and websites, World Wide Web, URLs, using search
	engines
VIII	Bioinformatics
	• Databases: nucleic acids genomes protein sequences and structures
	Bibliography
	 Sequence analysis (homology): pairwise and multiple, sequence alignments-
	BLAST, CLUSTALW,
	Phylogenetic analysis

Course Code: ZOO 204 (B050402P/R)

Course Title: Genetic Engineering Lab, Genetic Counseling& Telemedicine

Unit	Торіс
Ι	 Measure the pre and post clitellar lengths of earthwormsand calculate mean, median, mode, standard deviation etc. Measure the height and weight of all students in the class and apply statistical measures.
II	 To perform bacterial culture and calculate generation time of bacteria. To study Restriction enzyme digestion using teaching kits. To study Polymerase Chain Reaction (PCR) using teaching kits. Demonstration of agarose gel electrophoresis for detection of DNA. Demonstration of Polyacrylamide Gel Electrophoresis (PAGE) for detection of proteins. To calculate molecular weight of unknown DNA and protein fragments from gel pictures.
III	 To learn the basics of computer applications To learn sequence analysis using BLAST To learn Multiple sequence alignment usingCLUSTALW To learn about Phylogenetic analysis using theprogramme PHYLIP. To learn how to perform Primer designing for PCR using available softwares etc.
IV	 Gel Documentation Systemhttps://youtu.be/WPpt3-FanNE Colorimeter- https://youtu.be/v4aK6G0bGuU PCR Part 1- https://youtu.be/CpGX1UFSI4A PCR Part 2- https://youtu.be/6IcHAYPTAEw DNA isolation Part 1-https://youtu.be/QE7Ul0JnY9A DNA isolation part 2-https://youtu.be/-efr_HFeHxM DNA curve- https://youtu.be/ubL8QxTeuG4 Spectrophotometer-https://youtu.be/7gvHPFwwg Agarose part 2- https://youtu.be/j_bOZCHNsSg

Course Code:: ZOO 301 (B050501T)

Course Title:	Diversity of Non-Chordates, Parasitology and Economic Zoology
redits: 4+0	
Unit	Торіс
Ι	Protozoa to Coelenterate
	 Protozoa - <i>Euglena</i>, <i>Monocystis</i> and <i>Paramecium</i> Porifera - <i>Sycon</i> Coelenterata - <i>Obelia</i> and <i>Aurelia</i>
II	Ctenophora to Nemathelminthes
	Ctenophora - Salient features
	• Platyhelminthes - <i>Fasciola</i> (Liver fluke) and <i>Taenia</i> (Tape worm) Nemathelminthes - <i>Ancylostoma</i> (Hook worm)
III	Annelida to Arthropoda
	 Annelida - <i>Nereis</i> and <i>Hirudinaria</i> (Leech) Arthropoda - <i>Palaemon</i> (Prawn) and <i>Schistocerca</i>(Locust)
IV	Mollusca to Hemichordata
	 Mollusca - Lamellidens (Fresh water mussel) and Pila Echinodermata -Pentaceros (excluding development)
V	Parasitology
	• Structure, life cycle, pathogenicity, including diseases, causes symptoms and control of the following parasites of domestic animals and humans: <i>Trypanosoma, Giardia and Wuchereria</i>
VI	Vectors and pests
	• Life cycle and their control of following pests: Gundhi bug, Sugarcane leafhopper, Rodents. Termites and Mosquitoes and their control.
VII	Economic Zoology-1
	Animal breeding and culture: Aquaculture, Pisciculture, Poultry
VIII	Economic Zoology- 2
	Sericulture, Apiculture, Lac-culture, Vermiculture

Course Code:: ZOO 302 (B050502T)		
Course Title: Diversity of Chordates and Comparative Anatomy		
Credits: 4+0	ře v	
Unit	Topic	
Ι	Origin of Chordates & Hemichordata	
	Origin of Chordates.	
	• Classification of Phylum Chordata upto the Order.	
	• Hemichordata: General characteristics, classification and detailed study of	
	Balanoglossus (Habit and Habitat, Morphology, Anatomy, Physiology and	
	Development).	
II	Cephalochordata and Urochordata	
	• Cephalochordata : General characteristics, classification and detailed study of	
	Branchiostoma (Amphioxus) (Habit and Habitat, Morphology, Anatomy,	
	Physiology).	
	• Urochordata : General characteristics, classification and detailed study of	
	Herdmania (Habit and Habitat, Morphology Anatomy, Physiology and Post	
	Embryonic Development).	
III	Classification and General Characteristics of Vertebrates	
	General characters and Classification of different classes of Pisces and Amphibia	
	up to the order with examples.	
	Neoteny and Paedogenesis	
IV	Classification and General Characteristics of Vertebrates	
	General characters and Classification of different classes of Reptilia, Aves and	
	Mammalia up to the order with examples.	
	 Poisonous and Non Poisonous Snakes, Biting mechanism of snakes. 	
	Flight Adaptations in Birds	
	Adaptive Radiations in Eutheria	
V	Integumentary System	
	Structure, functions and derivatives of integument	
	Skeletal System	
	Overview of axial and appendicular skeleton, Jaw suspensorium Visceral arches	
VI VI	Digestive System	
	Alimentary canal and associated glands	
	Respiratory System	
N/II	Skin, gills, lungs and air sacs; Accessory respiratory organs	
VII	Circulatory System	
	• General plan of circulation, evolution of heart and aortic arches	
	Urinogenital System	
VIII	Succession of kidney, Evolution of unnogenital ducts, Types of mammanan dueri	
V 111	Comparative account of brain Autonomic nervous system Spinel cord Craniel	
	Comparative account of orall Autonomic nervous system, Spinal cord, Cramal nerves in mammals	
	Sense Organs	
	Classification of recentors Brief account of visual and auditory recentors in man	
	- Chassification of receptors brief account of visual and auditory receptors in man	

Course Code:: ZOO 303 (B050503P)			
Course Title: Lab on Virtual Dissection, Anatomy, Economic Zoology and Parasitology			
Credits: 0+2			
Unit	Торіс		
Ι	1. Study of animal specimens of various animal phyla.		
	2. To prepare permanent stained slide of septal nephridia of earthworm.		
	3. To take out the nerve ring of earthworm To take out hastate plate from <i>Palaemon</i>		
II	1. Study of animal specimens of various animal phyla		
	2. Study on use and ethical handling of model organisms(Mice, rats, rabbit and pig).		
	3. To prepare stained/unstained slide of placoid scales		
	4. Comparative study of bones of different vertebrates		
	5. Comparative study of histological slides of different tissues of vertebrates.		
III	1. Permanent Preparation of: Euglena, Paramecium		
	2. Study of prepared slides/ specimens of Entamoeba Giardia, Leishmania,		
	Trypanosoma, Plasmodium Fasciola, Cotugnia, Taenia, Rallietina, Polystoma		
	Schistosoma, Echinococcus, Enterobius, Ascaris and Ancylostoma;		
	3. Permanent Preparation of Cimex (bed bug)/ Pediculus(Louse), Haematopinus		
	(cattle louse), fresh water annelids, arthropods; and soil arthropods, Larval stages		
	of helminths and arthropods		
	4. Permanent mount of wings, mouth parts and developmental stages of mosquito		
	and house fly		
	5. Permanent preparation of ticks/ mites, abdominal gills of aquatid insects viz.		
	Chironomus larva, dragonfly and mayfly nymphs, preparation of antenna of		
	housefly Identification of pests.		
	6. Life history of silkworm, honeybee and lac insect		
	7. Different types of important edible fishes of India		
	8. Slides of plant nematodes		
	9. Study of an aquatic ecosystem, its biotic components and food chain		
	10. Project Report/ model chart making		
	11. Dissections : through multimedia / models		
	12. Cockroach : Central nervous system		
	13. Wallago : Afterent and efferent branchial vessels Cranial nerves, Weberian		
	ossicles		
1V	Virtual Labs		
	1. https://www.viab.co.in		
	2. https://zoologysan.blogspot.com		
	3. WWW.VIab.IIItb.ac.In/VIab		
	4. https://www.viab.co.in 5. https://reelegy/gen_bloggenet_eem		
	5. https://20010gysan.ologspol.com		
	6. WWW.Viab.iiib.ac.iii/viabwww.oniineiaos.iii		
	/. WWW.powersnow.comnups://viab.amrita.edu		
	8. https://sites.dafunoun.edu		

Course Code:	: ZOO 304 (B050601T)
Course Title:	Evolutionary and Developmental Biology
Credits: 4+0	
Unit	Торіс
Ι	Theories of Evolution
	Origin of Life
	• Historical review of evolutionary concept: Lamarckism, Darwinism (Natural,
	Sexual and Artifical selection)
	Modern synthetic theory of evolution
	Patterns of evolution (Divergence, Convergence Parallel, Coevolution)
II	Population Genetics
	Microevolution and Macroevolution: allele frequencies, genotype frequencies,
	 Hardy Weinberg equilibrium and conditions for its maintenance
	Forces of evolution: mutation, selection, genetic drift
III	Direct Evidences of Evolution
	 Types of fossils, Incompleteness of fossil record,
	Dating of fossils, Phylogeny of horse
IV	Species Concept and Extinction
	 Biological species concept (Advantages and Limitations);
	 Modes of speciation(Allopatric, Sympatric)
	Mass extinction (Causes, Names of five major extinctions)
V	Gamete Fertilization and Early Development
	Gametogenesis, Fertilization
	Cleavage pattern
	Gastrulation, fate maps
	Developmental mechanics of cell specification
	Morphogenesis and cell adhesion
VI	Developmental Genes
	Genes and development
	Molecular basis of development
	Differential gene expression
VII	Early Vertebrate Development
	• Early development of vertebrates (fish, birds & mammals)
	• Metamorphosis, regeneration and stem cells
	Environmental regulation of development
VIII	Late Developmental Processes
	• The dynamics of organ development
	• Development of eye, kidney, limb
	• Metamorphosis: the hormonal reactivation of development in amphibians, insects
	Regeneration: salamander limbs, mammalian liver, Hydras
	Aging: the biology of senescence

Course Code::	ZOO 305 (B050602T)
Course Title:	Ecology, Ethology, Environmental Biology and Wildlife
Credits: 4+0	
Unit	Торіс
I	Introduction to Ecology
	History of ecology, Autecology and synecology Levels of organization, Laws of limiting factors Study of physical factors
II	Organization of Ecosystem
	• Levels of organization. Laws of limiting factors Study of physical factors.
	• Population: Density, natality, mortality, life tables, fecundity tables, survivorship
	curves, age ratio, sex ratio, dispersal and dispersion, Exponential and logistic
	growth,
	• Types of ecosystems with one example in detail, Food chain: Detritus and grazing
	food chains, , Food web, Energy flow through the ecosystem
	Ecological pyramids and Ecological efficiencies, Nutrient and biogeochemical
	cycle with one example of Carbon cycle
III	Community Ecology
	• Community characteristics: species richness, dominance diversity, abundance, Ecological succession with one example
IV	Environmental Hazards
	Sources of Environmental hazards
	Climate changes
	Greenhouse gases and global warming
	Acid rain, Ozone layer destruction
V	Effects of Climate Change
	Effect of climate change on public health
	• Sources of waste, types and characteristics Sewage disposal and its
	management, Solid waste disposal, Biomedical waste handling and disposal,
	• Nuclear waste handling and disposal, Waste from thermal power plants,
	• Case histories on Bhopal gas tragedy, Chernobyl disaster, Seveso disaster and Three Mile Island accident and their afterments
VI	Rehavioural Ecology and Chronobiology
VI	Origin and history of Ethology
	 Instinct vs. Learnt Behaviour
	 Associative learning classical and operant conditioning Habituation Imprinting
	 Circadian rbythms: Tidal rbythms and Lunar rbythms
	Chronomedicine
VII	Introduction to Wild Life
	• Values of wild life - positive and negative;
	Conservation ethics;
	• Importance of conservation;
	Causes of depletion;
	World conservation strategies.
VIII	Protected areas
	• National parks & sanctuaries,
	• Community reserve;
	• Important features of protected areas in India;
	• Tiger conservation - Tiger reserves in India;
	Management challenges in Tiger reserve

Course Code:: ZOO 306 (B050603P)			
Course Title: Lab on Ecology, Environmental Science, Behavioral Ecology & wildlife			
Credits: 0+2			
Unit	Торіс		
Ι	1. Study of life tables and plotting of survivorship curves of different types from the hypothetical/real data provided.		
	2. Study of population dynamics through numerical problems.		
	3. Study of circadian functions in humans (daily eating, sleep and temperature patterns).		
II	1. Report on a visit to National Park/Biodiversity Park/Wild life sanctuary		
III	 Demonstration of basic equipment needed in wildlife studies use, care and maintenance(Compass, Binoculars, Spotting scope, Range Finders, Global Positioning System, Various types of Cameras and lenses) 		
	 Familiarization and study of animal evidences in the field; Identification of animals through pug marks, hoof marks, scats, pellet groups, nest antlers etc. Demonstration of different field techniques for flora and fauna 		
IV	Virtual Labs		
	1. https://www.vlab.co.in		
	2. https://zoologysan.blogspot.com		
	3. www.vlab.iitb.ac.in/vlab		